

User Manual ExMEGA 2.0 & Data Analysis

Tel. 02-3141-0791 Fax. 02-3141-0792 E-mail: service@e-biogen.com

<목 차>

1.	ANCOM and Definitions of key terminologies3
2.	ExMEGA Download and Setup4
3.	Differential Abundance (DA)6
4.	Diversity Analysis (ExMEGA GraphicPlus)10

1. Definitions of key terminologies

ANCOM

ANCOM(analysis of composition of microbiomes)은 Metagenome 을 분석하는 검증된 통계적 방법입니다. ANCOM 을 사용하여 Relative abundance 로 Absolute abundance 를 추정할 수 있습니다. ANCOM 을 효과적으로 이용하기 위해서는 그룹 간에 차이가 있으며 서로 연관된 샘플들이어야 합니다.

기타 용어

ASV(Amplicon Sequence Variant)는 dada2 방법으로 생성되며, 기존 OTU(유사도를 기반으로 하는 서열 클러스터링 방법)보다 뛰어난 해상도를 보여줍니다.

Relative abundance 를 통한 분석만으론 Metagenome 생태계를 비교하기는 어렵습니다. 최근에는 다양한 통계방법(ANCOM 등)을 이용하여 Absolute abundance 를 추정하고 있습니다.

용어	정의
OTU	운영 분류 단위: 97% 유사성을 갖는 DNA 서열 그룹.
ASV	PCR 증폭 및 시퀀싱 중에 생성된 가짜 시퀀스를 제거한 후 고처리량 마커 유전자 분석에서 회수된 개별 DNA 시퀀스.
Absolute abundance	생태계의 단위 부피에서 관찰할 수 없는 실제 분류군의 풍부함.
Relative abundance	표본에 있는 모든 분류군의 합에 대한 특징표에서 관찰된 분류군의 비율. 0 과 1 사이

Reference <u>https://www.zymoresearch.com/blogs/blog/microbiome-informatics-otu-vs-asv</u> a Callahan, Benjamin J., Paul J. McMurdie, and Susan P. Holmes.

2. ExMEGA Download and Setup

㈜이바이오젠은 Metagenome data 를 엑셀 기반에서 쉽게 분석할 수 있도록 분석 결과 보고 시 ExMEGA (Excel based MetaGenome Analysis) tool 과 ExMEGA Graphic Plus 를 함께 제공한다.

ExMEGA 분석 툴은 ㈜이바이오젠이 연구자들이 Metagenome 데이터를 보다 쉽게 다루고 원하는 데이터를 쉽게 얻을 수 있도록 사용자 편의를 최대한 반영한 분석 툴이고 엑셀 프로그램 안에서 다양한 분석을 직관적으로 수행할 수 있도록 개발되었다. ExMEGA 분석 툴은 사용자들의 요구사항을 지속적으로 반영하여 데이터 분석과 엑셀 사용에 익숙하지 못한 연구자들도 쉽게 사용이 가능하도록 계속 업데이트 될 예정이다.

이바이오젠에서 제공하는 Metagenome 를 열기 전에 다운로드 폴더에서 함께 제공한

ExMEGA_v(버전)_Installer.zip 파일의 압축을 풀고, setup.exe 를 실행하면 분석 툴이 설치된다(그림 1-1 A). 만약 설치가 되지 않을 경우, 압축을 푼 파일에 있는 ExMEGA 폴더를 컴퓨터의 로컬 C 드라이브 아래로 복사+붙여넣기 하면 ExMEGA Graphic Plus 프로그램이 설치 완료된다(그림 1-1 B). 설치가 완료되고 ExMEGA format 의 엑셀 데이터를 열면 자동으로 ExMEGA 분석 툴이 구동된다. 참고로 ExMEGA 설치 전에 실행 중인 엑셀 파일이 있으면 종료시킨 후 다시 실행해야 ExMEGA 를 사용할 수 있다.

이름	수정한 날짜	유형	크기
Application Files	2022-07-06 오전 10:42	파일 폴더	
ExMEGA	2022-07-06 오전 10:43	파일 폴더	
ExMEGASetup.application	2022-07-05 오전 9:56	Application Manifest	2KB
🦫 placer.bat	2022-07-06 오전 10:45	Windows 배치 파일	1KB
🔄 setup.exe	2022-07-05 오전 9:56	응용 프로그램	507KB

그림 1-1 A. ExMEGA set up

PC > OS (C:)			~	C
이름	수정한 날짜	향유	크기	
https://www.apps	2021-08-05 오전 11:28	파일 폴더		
📁 Dell	2022-04-05 오후 1:31	파일 폴더		
Drivers	2021-08-06 오전 3:58	파일 폴더		
늘 Exmega	2022-07-04 오후 3:46	파일 폴더		
📁 ILOGEN	2022-01 <mark>-05 오후 5:03</mark>	파일 폴더		
📁 langpacks	2020-05-06 오후 10:27	파일 폴더		
📁 PerfLogs	2021-06-05 오후 9:10	파일 폴더		
늘 Program Files	2022-07-01 오전 8:54	파일 폴더		
📁 Program Files (x86)	2022-04-05 오후 1:31	파일 폴더		

그림 1-1 B. ExMEGA Graphic Plus installation

ExMEGA format 의 엑셀 파일을 열면, 왼쪽에 Taxonomy 창과 가운데에 Metagenome data, 오른쪽에 DA(Differential Abundance) Analysis 창이 실행된다(그림 1-2). Taxonomy 창에서는 기본 설정된 Taxonomy 정보가 있고, 원하는 Taxon 들만 선택하여 데이터를 필터링할 수 있다. DA Analysis 창에서는 Relative Abundance 값을 선택하여 DA 선별을 쉽게 할 수 있고 DA 를 각 Taxon 별로 그래프를 작성할 수 있다. DA 분석 창에서 Pie Chart 뿐만 아니라 Venn Diagram 을 직접 그릴 수 있고 선별된 ASV(Amplicon Sequence Variant) 대상으로 Bar plot, Krona Chart, PCoA, Clustering heatmap, LDA plot 을 그릴 수 있다.

~	× 1	ilter:	1539	9					Taxonomy				Average of	Relative Ab	andance	Average	of Feature	Count	
View All Data	2	ID	π.	ASV	- Kingd	+ Phy	ylun -	Class -	Order -	Family -	Genus -	Specie -	Α -	B -	C -	A -	B 🔫	С -	A DA Anabusis
View All Data	3	1		4dda3a74f2bf9a7d1a5be15fbf8fbc64	d_Bac	eriap_B	Bactero c	Bactero	Bactero	f_Bactero	g_Bactero		0.00%	0.00%	2.97%	0	0	750.875	(
konomy	4	2		889bfa9e582f8e8b58e7dfbf4f7b66a7	d_Bac	eriz p_Fi	irmicu c	Clostrid	_Oscillos	f_Oscillos			0.00%	0.00%	0.00%	0	0	0.5	Significant Taxon Pie Chart
Phylum	5	3	6	0b2f98063db272dc65373defc3dd0907	d_Bac	eria p_B	actero c	Bactero	Bactero	f_Muribac	g_Muriba	s_uncultu	0.62%	0.36%	0.00%	162.5	82.142857	0	() Mana Disastan
	6	4	1	98cd478dcbe17c474061139e7505cf0f	d_Bad	eris p_Fi	irmicu c	_Clostrid	Clostrid	f_Clostrid	g_Clostrid	s_uncultu	0.00%	0.00%	0.01%	0	0	2.625	(venn biagram
Class	7	5	2	b4dca0048bafb098b206531033c09819	d_Bac	eria p_Fi	irmicu c_	Clostrid	_Oscillos	f_Oscillos	g_Colidex		0.00%	0.00%	0.00%	0	0	0.25	•
Order	8	6		5e329e61daa94379223d221363003615	d_Bac	ericp_B	Bactero c	Bactero	Bactero	f_Bactero	g_Bactero		0.00%	0.00%	1.01%	0	0	256	GraphicPlus Start
Family	9	7		c6dc8737919138e03a6536d8bba231e6	d_Bac	eria p_Fi	irmicu c	Bacilli	Acholeg	f_Acholep	g_Anaero	s_uncultu	0.00%	0.00%	0.00%	0	0	0.5	•
	10) 8		c0bc5dde25d896d271f66c9cbe3d6d62	d_Bac	eria p_Fi	irmicu c	Bacilli d	Lactoba	f_Leucond	g_Leucon		0.01%	0.00%	0.00%	3.5	1	0	(Bar Plot
Genus	11	9		d29ed019f8f94bdeb975627ccbd98d0a	d_Bac	eriap_Fi	irmicu c_	_Clostrid	o_Oscillos	f_Rumino	g_Incertae		0.00%	0.00%	0.00%	0	0	0.25	Krona Chart
Species	12	10	0	a382f914b74187cc027862e9232206b2	d_Bac	eric p_A	Actinob c_	Corioba	Corioba	f_Eggerth			0.00%	0.00%	0.00%	0	0.8571429	0	Bata Disercity(PCod)
	13	11	1	c6e4e41126581c5cf596b4d23c8218ce	d_Bac	eria p_D	Desulfoc	Desulfo	Desulfo	f_Desulfo	g_Desulfo		0.54%	0.51%	1.87%	142.5	116	473.125	
	14	1	2	194f6fa35dfc9b0650eca906507a486b	d_Bac	eria p_B	actero c_	Bactero	Bactero	f_Muribad	g_Muriba	s_uncultu	0.00%	0.00%	0.30%	0	0	74.75	Clustering HeatMap
	15	13	3	4cb800503906a9e601d50141060e8a49	d Bar	erizo D	Desulfor.	Desulto	Desulfo	f Desulfo	a uncultu	s uncultu	0.00%	0.00%	0.32%	0	0	80.25	A 104

그림 1-2. Metagenome data in ExMEGA format

3. Differential Abundance (DA)

Taxonomy 창 사용 방법

Metagenome 의 Clustering 최소 단위인 ASV(Amplicon Sequence Variant)는 정해진 분류군을 볼 수 있는 직접적인 방법이 아니다. 각 Taxonomy(Phylum, Class, Order, Family, Genus, Species)에서는 원하는 류군만 필터링하여 볼 수 있다. (그림 3-1)

그림 3-1. Taxonomy selection

가장 왼쪽 상단에 'View All Data' 버튼을 누르면 필터를 모두 해제하여 다시 전체 결과를 볼 수 있다

				A	В		c	D	E	F	G	н	
	~	×	1	Filter: 661					-	Taxonomy			
		^	2	ID 🔭	ASV	-	Kingdo -	Phylui -	Class -	Orde -	Famil: -	Genu 🚽	Specie -
	View All Data		3	1	321592f084359113f23e3e38237c8093		dBacteria	p_Campile	Campyl	oCampyl	fHelicob	gHelicob	sHelicob
Tayonor	7017		4	2	8373a6f34bdfb5996c716e2c6e764ce2		dBacteria	pBacterc	Bactero	Bacterc	fRikenell	g_Alistipe	sAlistipe
	ny			3	fa387857a369df7328f595391386555d		dBacteria	pBacterc	Bactero	Bacterc	fRikenell	gAlistipe	
🕗 Phyl	um		6	4	8d0a3ca24ccba95ef79fb0fbbd91709f		dBacteria	p_Campilo	Campyl	Campyl	fHelicob	gHelicob	sHelicob
Class	s		7	5	e01914f46e26f1aaed24bd00c9c442b8		dBacteri	pBacterc	Bactero	Bacterc	fMuribac	g_Muriba	5Muriba
Check	TaxonName		8	6	c84137e57f8283dbc56df43da161dd1c		dBacteri	pBacterc o	Bactero	Bacterc	fPrevote		
-	a Commulabastaria	-	10	8	82a938698291b68cecfcb9d46457229b		dBacteri	pBacterco	Bactero	Bacterc	fBactero	gBacterc	6
	cCampyiobacteria	-	12	10	d52e4e06b7fc88a48f5464555c0973f3		dBacteri	pBacterc	Bactero	Bacterc	fPrevote	-3	
	cBacteroidia	-100	13	11	e28749be518256d40762e358d5f48821		dBacteri	pBacterc	Bactero	Bacterc	fPrevote	gAllopre	
	cvampinvibrionia	-100	14	12	edaebfecd88812ac54235907a571a16d		dBacteri;	pBacterc	Bactero	Bacterc	fMuribad	gMuriba	suncultu
	cverrucomicrobiae	-111	16	14	3bfbf0a80abd58e7c6a16da6dec33154		dBacteria	pBacterc	Bactero	Bacterc	fRikenell	gAlistipe	sAlistipe
	cClostridia	-	17	15	af5fe3a72c0bbba02162e60150c31887		dBacteria	pBacterc	Bactero	Bacterc	fBactero	gBacterc	
	cDeferribacteres	-111	19	17	43ad07aa6643c9dd6d7fd103956c27d0		d_Bacteria	pBacterc	Bactero	Bacterc	f_Muribad	g_Muriba	sunident
	cBacilli	-111	20	18	ecb1f8a7d07e9f1e081f4f5faf2327de		d Bacteria	p Bacterco	Bactero	Bacterc	f Muribad	g Muriba	s uncultu
	cAlphaproteobacteria		21	19	5eafb639b86bf607f38a817820e982a9		d Bacteria	p Bacterco	Bactero	Bacterc	f Muribad	g Muriba	s uncultu
	cGammaproteobacter	<u>i</u> e –	22	20	4dda3a74f2bf9a7d1a5be15fbf8fbc64		d Bacteria	p Bacterco	Bactero	Bacterc	f Bactero	g Bacterc	(100-100) (
	cSaccharimonadia	-	23	21	d60740cdfee329165f0fbbc482494635		d Bacteria	p Bacterco	Bactero	Bacterc	f Rikenell	g Alistipe	
	cDesulfovibrionia	-	24	22	84b1653758e1a862e7b599d66960273c		d Bacteria	p Bacterco	Bactero	Bacterc	f Muribad	g Muriba	5 Muriba
	cActinobacteria	-	25	23	34e8c93392eff3a8245f395589dbfcc2		d Bacteria	p Bacterco	Bactero	Bacterc	f Rikenell	g Alistipe	
	cCoriobacteriia	-	26	24	7a8c6354aaa1d4c6f0cb647e9fd91356		d Bacteria	p Bacterco	Bactero	Bacterc	f Muribao	g Muriba	s uncultu
	cNegativicutes		27	25	3af92fc1a7e277a4a8322b86c7149c7e		d Bacteri	p Bacterco	Bactero	Bacterc	f Muribao	g Muriba	s uncultu
	cIncertae_Sedis	_	28	26	08f0f19726e994a36f5f5d0fb628cc3a		d Bacteria	p Bacterco	Bactero	Bacterc	f Muribad		
<	2	<u>></u>	30	28	4240d1092b0c263df5f3fc952a08fe75		d Bacteria	p Bacterco	Bactero	Bacterc	f Muribad	g Muriba	5 Muriba

Significant Taxon

오른편의 DA Analysis 부분에서 "Significant Taxon" 창은 그룹별로 비교한 결과에서 유의하게 발현 차이가 나는 분류군을 필터링 할 수 있도록 만들어 놓은 것이다. Relative Abundance(상대 풍부도) 와 W(통계 유의성)값을 이용해 필터링하여 각 샘플 및 그룹에 대한 조건이 적용된 결과를 확인할 수 있다. W 값을 설정하면 설정한 값 이상을 만족하는 Taxon 만 필터링 되어 통계적 유의성을 만족하는 분류군에 대한 분석이 가능하다. Relative Abundance 도 설정한 값 이상의 Taxon(ASV)만 필터링하여 낮은 분류군들은 제거하여 분석할 수 있다.

1	4	В	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	AA	AB	.
Filte	r: 17			W	Y			Si	gW		Average of	Relative At	oundance	Average	of Feature	Count		· · · · · · · · · · · · · · · · · · ·
1	D .T	ASV	A/B -	A/C 💷	B/C-	All 🖵	A/B -	A/C-	B/C -	All 👻	C 🗸	Α 🖵	Β 👻	С 🖵	Α 🖵	В 🖵	A1 👻	DA Analysis
4	54	4dda3a74f2bf9a7d1a5be15fbf8fbc64	3	1418	1534	1531	FALSE	TRUE	TRUE	TRUE	2.97%	0.00%	0.00%	750.875	0	0	0.00%	Cartenary Law
7	92	889bfa9e582f8e8b58e7dfbf4f7b66a7	1	1374	1439	39	FALSE	TRUE	TRUE	FALSE	0.00%	0.00%	0.00%	0.5	0	0	0.00%	Significant Taxon
6	9	0b2f98063db272dc65373defc3dd0907	3	1360	1432	1466	FALSE	TRUE	TRUE	TRUE	0.00%	0.62%	0.36%	0	162.5	82.142857	0.67%	Belative Abused and (2)
81	83	98cd478dcbe17c474061139e7505cf0f	c	1302	21	24	FALSE	TRUE	FALSE	FALSE	0.01%	0.00%	0.00%	2.625	0	0	0.00%	Relative Abundance(36)
10	47	b4dca0048bafb098b206531033c09819	1	1269	1446	41	FALSE	TRUE	TRUE	FALSE	0.00%	0.00%	0.00%	0.25	0	0	0.00%	0.00
5	54	5e329e61daa94379223d221363003615	1	1200	1412	1448	FALSE	FALSE	TRUE	TRUE	1.01%	0.00%	0.00%	256	0	0	0.00%	w
11	80	c6dc8737919138e03a6536d8bba231e6	1.3	1185	1408	39	FALSE	FALSE	TRUE	FALSE	0.00%	0.00%	0.00%	0.5	0	0	0.00%	1000 🗘
11	37	c0bc5dde25d896d271f66c9cbe3d6d62	3	1170	1396	37	FALSE	FALSE	TRUE	FALSE	0.00%	0.01%	0.00%	0	3.5	1	0.00%	Sample (Control
12	54	d29ed019f8f94bdeb975627ccbd98d0a	3	1162	1406	45	FALSE	FALSE	TRUE	FALSE	0.00%	0.00%	0.00%	0.25	0	0	0.00%	Sample / Control
9	12	a382f914b74187cc027862e9232206b2	1	1156	1394	40	FALSE	FALSE	TRUE	FALSE	0.00%	0.00%	0.00%	0	0	0.8571429	0.00%	Name Name
11	82	c6e4e41126581c5cf596b4d23c8218ce	1	1133	1319	22	FALSE	FALSE	FALSE	FALSE	1.87%	0.54%	0.51%	473.125	142.5	116	0.03%	A/B
1	11	194f6fa35dfc9b0650eca906507a486b	1	1130	1321	1338	FALSE	FALSE	FALSE	FALSE	0.30%	0.00%	0.00%	74.75	0	0	0.00%	✓ A/C
4	50	4cb800503906a9e601d50141060e8a49	3	1122	1307	1340	FALSE	FALSE	FALSE	FALSE	0.32%	0.00%	0.00%	80.25	0	0	0.00%	B/C
14	26	ef83a8dcd040566537b1e812378fc048	3	1122	1343	41	FALSE	FALSE	FALSE	FALSE	0.00%	0.00%	0.00%	0.375	0	0	0.00%	All
14	71	f6e2f231f56930f016a3edfd8706a60c	1	1082	1261	94	FALSE	FALSE	FALSE	FALSE	0.13%	0.19%	0.00%	32.25	49	0	0.12%	
6	35	6bdec4eb36e22f5346fd4b79d3b4636d	3	1020	1329	41	FALSE	FALSE	FALSE	FALSE	0.00%	0.00%	0.00%	0.25	0	0	0.00%	
5:	18	58c9269c2280f20bb254b4ebf0d2bd1a	1041	1017	43	1192	TRUE	FALSE	FALSE	FALSE	0.00%	0.09%	0.00%	0	24.5	0	0.14%	

예를 들어 A / C 를 기준으로 W 값을 1000 으로 설정하여 총 17 개의 ASV 가 필터링 된 것을 확인할 수 있다.

그림 3-2. Significant Taxon

Pie Chart

Pie Chart 를 활용하여 각 단일 샘플 및 그룹에 대한 6 가지 Taxon 별 분포 비율을 알 수 있다. ASV 단위가 아닌 실제 Taxon 별로 합산한 상대적 비율을 Pie Chart 로 확인할 수 있다.

Phylum_Taxon

그림 3-3. Pie Chart

그림 3-3 은 단일 샘플에 대한 Phylum 에 대한 예시 파이 차트이다. 샘플 및 그룹에 대한 필터링이 적용된 풍부도를 알 수 있으며, Chart 내 taxa 를 클릭하면 필터링 된 결과만 엑셀창에서 확인할 수 있다. 단, 한 샘플만 선택해야 한다.

Venn Diagram

원하는 샘플 및 그룹에서 ASV 에 대한 벤다이어그램을 제작할 수 있다. 최대 4 개까지 비교 가능하며, 선별 기준은 Relative Abundance 만으로 필터링할 수 있다.

그림 3-5. Venn Diagram

그림 3-5 는 A, B, C 에 대해 Relative Abundance 1%로 선별하여 제작된 그림이다. 각 그룹별로 1% 이상인 ASV 행만 선별하여 공통된 region 과 그렇지 않은 region 에 대한 벤다이어그램이 제작된다. 특정 region 마우스 오른쪽 버튼으로 'Region All'을 클릭하면 해당 region 의 ASV 행만 선별하여 Excel 창에서 보여준다.

4. Graphic Plus

DA Analysis 부분에서 "GraphicPlus Start" 창을 펼치면 작동한다. Metagenome 분석 시각화에 대표적으로 사용되는 Bar Plot, Krona Chart, PCoA, Clustering heatmap, LDA effective size 을 제작할 수 있다.

ExMEGA (Graphic Plus v2.0.	0					?	\times
		ABC_f	ulller	ngth.xls	sx			
Bar Plot	Krona Chart	PCoA	Clu	istering H	leatmap	LDA		
Bar Pl	ot Data Inpu	t						
_ <u>Data T</u> γ	pe							
0	<u>Single Data</u>			0 <u>Gr</u>	oup Data			
Relative	e Abundance			Averag	ge of RA			
0,00	% 🛊			0,00	%	*		
Single D: A1_F A2_F A3_F B1_F B2_F B3_F	ata Column HFi HFi HFi HFi HFi HFi			Group A B C	Data Colu	ımn		
Selec	t All Data Colu	Imn		□ Sel	ect All Da	ata Colu	mn	
		Sh	ow B	ar Plot				

그림 4-0. Graphic Plus

모든 그래프는 단일 샘플 비교(Single Data)와, 그룹 비교(Group Data)가 모두 가능하도록 설계되어 있다. 단일 샘플비교는 Single Data 를 선택하고 Relative Abundance 를 threshold 로 데이터를 필터링을 진행하여 Bar plot 을 제작할 수 있다. 마찬가지로 그룹비교는 Group Data 를 선택하고 Average RA 로 원하시는 threshold 로 필터링을 진행하여 제작이 가능하다. Threshold 가 불필요하면 0.00% 로 설정하고 Bar plot 을 그리면 된다.

Bar Plot

원하는 샘플 및 그룹에 대한 조건을 만족하는 Bar Plot 을 제작한다.

그림 4-1. Bar Plot

Bar Width 를 통해 Bar 크기를 조절할 수 있으며, Taxonomic 탭에서 모든 Taxonomy(총 7 가지 분류군)에 대한 그래프를 모두 확인할 수 있다. Bar Plot 을 필터링 없이 제작하면 낮은 Taxon 들로 시각화에 방해될 수 있다. 보통 Relative Abundance 값을 0.1~1%로 설정하여 낮은 분류군을 필터링하는 방법으로 많이 사용한다.

Krona Chart

KronaTools 를 사용한 Krona chart 는 확대/축소가 가능한 multi-layered pie chart 이다. 이바이오젠에 선 필터링 조건을 적용한 Krona Chart 를 매크로 방법으로 제작한다. 여러 샘플을 선택할 경우 Chart 를 그리는데 시간이 오래 소요될 수 있다. 사용 방법과 자세한 설명은 해당 매뉴얼 페이지 에 자세히 설명되어 있다. <u>https://github.com/marbl/Krona/wiki/Browsing-Krona-charts</u>

ΡϹοΑ

PCoA(Principal Coordinates Analysis)는 Metagenome 에 사용되는 대표적인 Beta diversity(샘플 간 분석) 분석으로 샘플간 유사성을 거리로 계산하는 차원 축소 개념이다. PCoA 차원은 2D/3D Type 중 선택하며, Metric type 은 distance matrix 알고리즘으로 대중적으로 사용하는 braycurits 와 jaccard 방법 중 선택하여 사용할 수 있다. Marker Type 을 Group 으로 설정하면 각 샘플에 대한 그룹 정보도 확인할 수 있다. "Save Value Options"탭에서는 PCoA 에 활용한 각 수치 값들을 파일로 저장할 수 있다. PCoA 도 다른 그래프와 마찬가지로 필터링을 적용하여 유의미한 Taxon 분석할 수 있다.

ExMEGA Graphic Plus v2.0.0	? ×
ABC_fu	lllength.xlsx
Bar Plot Krona Chart PCoA	Clustering Heatmap LDA
PCoA Data Input	Metric Type braycurits jaccard Marker Type Single Group
Relative Abundance	Average of RA
Single Data Column A1_HiFi A2_HiFi A3_HiFi B1_HiFi B2_HiFi B3_HiFi	Group Data Column A B C C
🔲 Select All Data Column	🗌 Select All Data Column
Save Value Options —	
 Save PC Values Save Eigen Values Save Distance Values 	Save Values
Draw	PCoA Plot

그림 4-3-A. PCoA

그림 4-3-B 는 2D 로 분석한 샘플들 간의 PCoA 결과이다. 각 샘플들은 A / B / C 샘플들끼리 유사함을 알 수 있다.

Clustering Heatmap

Clustering Heatmap 은 ASV 마다 Relative Abundance(%) 비교를 시각화 할 수 있다. Relative Abundance 값은 0.05~0.5%까지 추천하며, 너무 높은 값을 필터링하면 많은 ASV 가 제거되어 그래프가 제작되지 않는다.

ExMEGA Graphic Plus v2.0.0	?	\times
ABC_fullength.xlsx		
Bar Plot Krona Chart PCoA Clustering Heatmap LDA PCoA Data Input		_
Data Type O Single Data O Group Data		
Relative Abundance Average of RA 0.03 %		
Select Clustering Column Display Options Ø A1_HiFi Ø A2_HiFi Ø A3_HiFi Ø B1_HiFi Ø B1_HiFi Ø B2_HiFi Ø B3_HiFi O C1_HiFi Ø Select All Data Column Ø Bisplay Options	 r SV) У	
Color scheme	~]
Draw Heatmap Save	e Values	

그림 4-4-A. Clustering Heatmap

LEfSe (Linear discriminant analysis Effect Size)

LDA 는 차원축소 기법 중 하나이고, LEfSe 는 LDA 기법을 이용하여 그룹을 비교할 때, 각 그룹에서의 특징적인 미생물들 즉, 클래스 간의 차이를 설명할 가능성이 가장 높은 특징을 가지고 있는 미생물들이 어떤 미생물인지를 찾아내는 분석 방법이다.

ExMEGA Graphic Plus v2.0.0			?	\times
	ABC_ful	llength.xlsx		
Bar Plot Krona Chart	PCoA	Clustering Heatmap LDA		
Bar Plot Data Input				
Data Type				
Single Data		◯ <u>Group Data</u>		
Relative Abundance		Average of RA		
0,00 %		0,00 %		
Single Data Column A1_HiFi A2_HiFi A3_HiFi B1_HiFi B2_HiFi B3_HiFi		Group Data Column A B C		
Select All Data Colum	n	Select All Data Colum	n	
	Sho	w Bar Plot		

첫 버튼인 Bar Plot 을 클릭하고 원하는 설정을 선택하고 Bar plot 을 제작한다. 그 다음 CSV 버튼을 클릭하여 relative abundance matrix 를 다운로드 한다.

그리고 LDA 에서 search 로 다운로드한 level-x.csv 파일을 불러온후 Draw LDA Plot 을 클릭하면 분석결과를 선택할 곳을 지정할 수 있고 선택이 완료되면 다시 한번 Draw LDA Plot 을 클릭하면 분석결과를 지정된 폴더에서 확인할 수 있다.

ExMEGA Graphic Plus v2.0.0	?	\times
ExMEGA_Sample_Report_v2.3.xlsx	:	
Bar Plot Krona Chart PCoA Clustering Heatmap	LDA	
-		
	Searc	
[Scarch	
Draw LDA Plot		

분석결과는 LDA_level-x_ExMEGA 레포트 파일명으로 생성된 폴더에서 확인이 가능하며 LDA effective size 분석결과는 cladogram.pdf, LDA score 는 the_list_of_biomarkers.pdf 에서 확인할 수 있고, biomarkers_raw_images 에서는 biomarker 별로 각 그룹에서의 분포를 확인이 가능하다.

LDA_level-3_ExMEGA_Sample_Report_v2