
EXOSOME

FROM BASIC BIOLOGY TO MULTI-OMICS APPLICATIONS

Exosome 연구의 활용: 기본 개념부터 다양한 오믹스 적용사례까지

1. Exosome 이란?

Exosome 은 약 30~150 nm 크기의 인지질 이중층으로 이루어진 세포_외 소포로, 대식세포, 간세포, 암세포를 비롯한 다양한 세포에서 분비된다. 이러한 나노 입자는 세포의 구조와 기능 유지에 기여할 뿐만 아니라, 세포 간신호 전달과 물질 교환을 매개하는 핵심적인 역할을 담당한다. 한때 exosome 은 단순히 세포 내 노폐물을 외부로 배출하는 수단으로 여겨졌으나, 최근 연구를 통해 면역 조절, 조직 재생, 질환 발생 등 다양한 생리·병리적 과정에 관여하는 중요한 매개체임이 밝혀졌다[1].

Exosome 의 분비와 내부 물질 적재(cargo loading)는 영양 공급 상태, 세포 스트레스, 그리고 다양한 생리적·병리적 조건에 의해 정교하게 조절된다. 이러한 조절 메커니즘과 특정 세포에서 분비된 exosome 이 원거리 수용 세포에 작용할 수 있는 점을 고려할 때, exosome 시스템은 고전적인 내분비 신호 전달과 유사한 특징을 보인다[2]. 이러한 내분비적 성격은 exosome 의 형성과 방출 과정에서도 잘 드러난다.

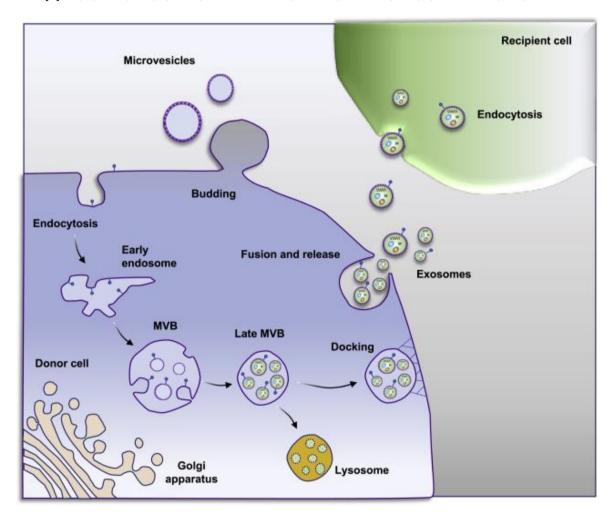


그림 1. Exosome Biogenesis and Secretion [2]

Exosome 은 세포 내 endosomal pathway 를 통해 형성된다. 먼저 세포막이 안쪽으로 함입(inward budding)되면서 early endosome 이 형성되고, 이때 외부에서 유입된 단백질, 지질, 핵산뿐 아니라 세포 내부 성분들도 함께 내포된다. 이후 early endosome 이 성숙하여 late endosome 으로 전환되는 과정에서 막이 다시 안쪽으로 함몰되면서 작은 소포들이 형성되는데, 이를 내부소포(intraluminal vesicles, ILVs)라 한다. 이러한 ILVs 를

포함한 구획은 다중소포체(multivesicular bodies, MVBs)라 불리며, 이 과정에서 단백질, RNA, 지질이 선택적으로 적재(cargo loading)된다.

형성된 MVB 는 두 가지 경로를 가진다. 일부는 리소좀과 융합하여 ILVs 가 분해·재활용되고, 다른 일부는 세포막과 융합해 ILVs 를 세포 외부로 방출한다. 이렇게 분비된 소포가 바로 exosome 이다. 방출된 exosome 은 수용 세포에 도달하여 수용체 매개 엔도사이토시스(receptor-mediated endocytosis) 등의 과정을 통해 내부물질을 전달하며, 이를 통해 세포 간 신호전달과 기능 조절에 중요한 역할을 한다[3](그림 1).

2. Exosome 의 연구적 가치

Exosome 은 내부의 다양한 분자를 표적 세포로 전달함으로써 중요한 연구적 가치를 지닌다. Exosome 이 운반하는 microRNA 와 long non-coding RNA 는 수용 세포 내 유전자 발현을 조절할 수 있으며, 열 충격 단백질이나 세포골격 단백질과 같은 단백질들은 직접적으로 세포 기능에 변화를 일으킨다. 더불어 인지질, 스핑고지질, 콜레스테롤 등의 지질 cargo 도 막 유동성과 신호전달 조절에 관여해 생리·병리적 반응에 영향을 준다. 특히 exosome 속 RNA 는 단백질 발현 변화를 통해 다양한 생물학적 과정을 조절할 수 있으므로, 질병의 진단 및 예후 예측을 위한 바이오 마커로서 높은 잠재력을 지닌다. 이러한 특징 때문에 암, 신경퇴행성 질환, 염증성 질환 등 여러 분야에서 exosome 연구가 활발히 이루어지고 있다[4].

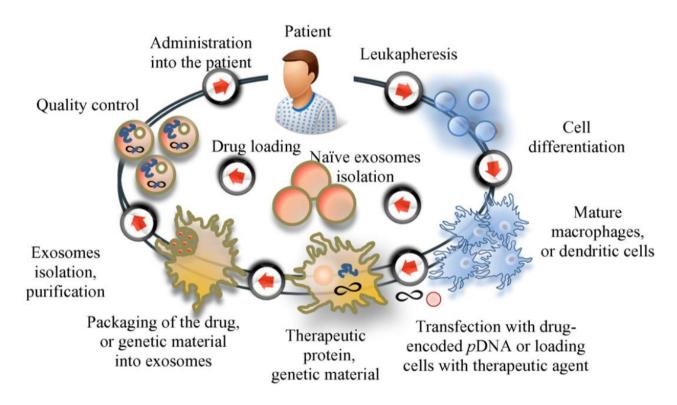


그림 2. Exosome-Mediated Therapeutic Delivery Process [1]

나아가 exosome 은 치료적 응용 측면에서도 큰 잠재력을 가진다. 환자 조직이나 혈액에서 분리한 exosome 은 합성 나노 입자와 달리 면역계에 쉽게 인식되지 않아 체내에서 안정적으로 작용한다. 그 결과 약물이 오래 머무르며 효과를 발휘할 수 있고, 특정 조직이나 세포에 더 선택적으로 전달될 수 있다. 실제로 최근 항원 반응을 일으킨 세포에서 분비된 exosome 이 백신 플랫폼으로 연구되거나 저분자 약물, 핵산, 단백질 등 다양한 치료제 전달에 활용되는 사례가 증가하고 있다. 이러한 과정은 환자 유래 세포에서 exosome 을 분리·정제하고 치료 물질을 탑재한 뒤 품질 관리 과정을 거쳐 다시 환자에게 투여하는 방식으로 진행된다. 이와 같은 방법은

exosome 이 차세대 약물 운반체로 활용될 수 있음을 보여주며[1](그림 2), 현재 세포 및 동물 모델 기반 연구와 초기 임상 단계 연구가 꾸준히 확대되고 있다.

Exosome 은 조직 생검과 달리 혈액이나 소변 등 체액에서 비침습적으로 반복 채취가 가능하기 때문에 질병 진행 모니터링과 예후 평가에 유용한 도구로 주목받고 있다. 조직 생검은 특정 시점의 정보만 제공하지만 질병 세포에서 지속적으로 분비되는 exosome 은 최신 분자 정보를 반영하기 때문에 정밀한 액체 생검 도구로 활용될 수 있다[5].

또한, 최근 연구에서는 exosome 에 치료 단백질인 카탈레이스(catalase)를 안정적으로 적재해 뇌의 뉴런과 미세아교세포에 전달함으로써 산화 스트레스 완화를 완화하고 신경 보호 효과를 유도할 수 있음을 보고 했다. 이과정에서 상온 배양, 동결-해동, 초음파 처리, 압출 등 다양한 탑재법을 적용하고 적재 효율과 항산화 활성을 비교·평가함으로써 제형을 최적화하였다. 이러한 결과는 exosome 이 질병 진단뿐 아니라 신경질환 치료를 포함한 다양한 치료 분야에서도 유용한 도구로 활용될 수 있음을 시사한다[6](그림 3).

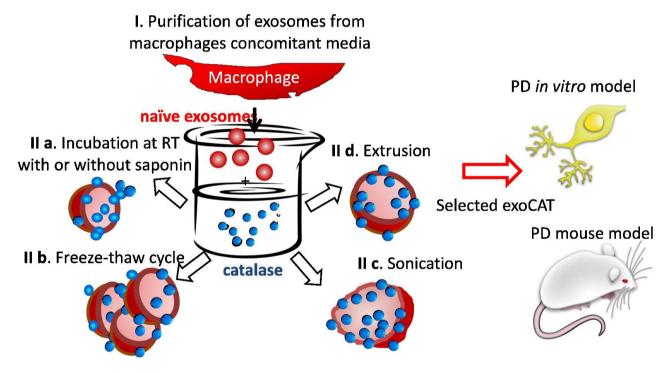


그림 3. Methods for Catalase Loading into Exosomes and Their Application in PD Models [6]

3. 주요 사례

Exosome은 RNA, 단백질, 대사체 등 다양한 분자를 담고 있어 연구 목적에 따라 RNA-seq, proteomics, metabolomics 등 여러 오믹스 분석에 활용될 수 있다. 최근 리뷰에서도 이러한 다각적 분석 접근이 임상 연구와 응용에 중요한 기반이 됨을 강조하고 있다.

예를 들어 Langevin et al. (2017)은 HNSCC 세포주 4종과 정상 구강 상피세포에서 exosome을 분리하여 miRNA-sequencing을 수행하였다. 그 결과 암 세포 유래 exosome에서 정상 세포와 구별되는 miRNA 프로파일이 확인되었으며, 일부 miRNA는 실제 HNSCC 환자의 타액에서도 증가된 수준으로 검출되어 비침습적 바이오 마커 후보로 제시되었다[7]. 이 사례는 exosome 기반 RNA-seq 분석이 단순한 분자 탐색을 넘어 바이오 마커 개발로 이어질 수 있음을 보여준다.

또 다른 연구에서는 전립선암 환자와 대조군의 혈장에서 exosome을 분리한 후, LC-MS/MS 기반 proteomics와 metabolomics를 수행하였다. 분석 결과, 암 환자 유래 exosome에서는 특정 단백질과 대사체 수준이 유의미하게 변화했으며, 그림 4와 같은 단백질-대사체 상관관계 분석을 통해 발현 패턴의 연동성이 확인되었다. 이 중 일부 단백질은 암 진행에 관여할 가능성이 제시되었고, proteomics와 metabolomics 결과가 상호 보완적으로 해석될 수 있음을 보여주었다[8](그림 4).

또한 exosome 표면 및 내부 단백질 패널링과 antibody array 기반 분석은 염증성 사이토카인 및 성장인자 신호와 질환 상태의 연관성을 빠르게 탐색할 수 있는 유용한 접근법이다. 최근 연구에서는 혈청 유래 exosome을 다양한 방법으로 정제한 뒤 antibody/immunoassay 기법을 적용하여 exosome 내부 사이토카인 프로파일을 분석했으며, 이들 사이토카인 수치와 전신 염증 상태 간의 유의미한 상관관계를 확인하였다[9]. 이는 antibody array 기반 exosome 분석이 질환 상태의 면역 반응 지표로 활용될 가능성을 잘 보여준다.

특히 RNA, 단백질, 대사체 정보를 통합하는 멀티오믹스 접근은 exosome 연구의 해석력을 높여 질환 기전이해와 환자 맞춤형 전략 수립에 실질적 근거를 제공한다. 분석은 exosome 연구의 분자적 이해를 심화시킬 뿐아니라, 임상 진단과 치료 응용으로 확장하는 데 핵심적인 기반이 된다.

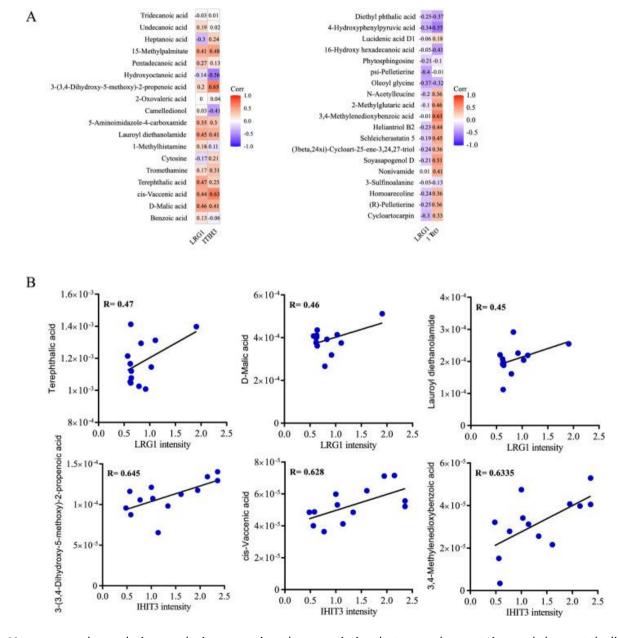


그림 4. Heatmap and correlation analysis presenting the association between the proteins and the metabolites [8]

4. E-biogen's Service

Small RNA-Seq

이바이오젠에서는 차세대염기서열분석(NGS) 기반으로 exosome, 세포, 조직, body fluid 등에 존재하는 microRNA, piRNA 와 같은 작은 크기의 RNA 를 NGS 기반으로 정밀하게 분석하는 Small RNA sequencing 서비스를 제공한다. 분석 결과는 ExDEGA & GraphicPlus 와 함께 제공되어, 발현 변화와 기능적 네트워크를 직관적으로 확인할 수 있다.

Sample requirement	>2 µg total RNA (Tissue, Cell) >20 ng RNA (Exosome, Body fluid)	
Library method	NEBNext Multiplex Small RNA Library Prep Kit	
NGS run format	NextSeq SE 75	
Data yield	>20 M reads/sample	
Turnaround time	~4 weeks after RNA QC	
Sample type	Tissue, Cell, Whole Blood(Paxgene), Serum, Plasma, Urine, Exosome, etc.	

LC-MS/MS Proteomics

LC-MS/MS proteomics 분석을 통해서는 exosome, 세포, 조직 등의 시료에서 단백질 발현을 전장 수준에서 규명할 수 있다. 다양한 분석 전략을 적용하여 수천 종의 단백질 발현 변화를 동시에 확인할 수 있으며, 이를 통해질환 특이적 단백질이나 주요 신호전달 경로를 밝히는 데 활용할 수 있다. 분석 결과는 ExDEPA & GraphicPlus와함께 제공되어 단백질 발현 프로파일과 기능적 해석을 시각적으로 지원한다.

Sample requirement	> 150 μg protein	
	(Labeling, PTM 시료는 추가시료 필요)	
Analysis Instrument	Agilent 1290 LC	
(HPLC & UPLC)	Thermo Vanquish LC	
Analysis Instrument (Mass Spectrometry)	Thermo Orbitrap Q-Exactive MS (High Resolution MS)	
	Thermo Orbitrap Exploris 480 MS (High Resolution MS)	
(Mass spectrometry)	SCIEX QTOF DIA MS	
Turnaround time	~ 6 weeks after Protein QC	
Sample type	Cell pellet, Tissue, Gel piece, Conditioned media, Serum/Plasma,	
	Exosome, Others	

LC-MS/MS Metabolomics

LC-MS/MS metabolomics 분석에서는 exosome 및 다양한 샘플 내 대사체를 고감도로 탐지할 수 있는 서비스로, untargeted 분석을 통해 대사체 전반의 변화를 폭넓게 파악하거나 targeted 분석을 통해 특정 대사체를 정량적으로 검출할 수 있다. 분석 결과는 정량 데이터 및 시각화 자료와 함께 제공된다.

Analysis Instrument (HPLC & UPLC)	Agilent 1290 LC Thermo Vanquish LC
Analysis Instrument (Mass Spectrometry)	Thermo Q-Exactive MS (Untargeted) SCIEX QTRAP 5500 (Targeted)
Software	Compound Discoverer, MetaboAnalyst, WebIDQ
Turnaround time	~ 6 weeks after Protein QC
Sample type	Cell pellet, Tissue, Serum/Plasma, Exosome pellet, Bacteria pellet, Plant, Fecal, etc.

Antibody Array

Antibody array 분석은 다중 항체 기반 플랫폼을 이용해 exosome 을 포함한 다양한 샘플에서 수십에서 수백 종의 단백질 발현을 동시에 검출할 수 있다. 특히 exosome 표면 단백질과 내부에 포함된 사이토카인, 성장인자, 인테그린(Integrin) 등은 질환 특이적 신호나 면역 반응을 반영하기 때문에, 질환 기전 연구와 바이오 마커 탐색에 유용하다. 결과는 ExDEGA & GraphicPlus 를 통해 직관적으로 확인할 수 있다.

Full Moon BioSystems Antibody Array

	Total Protein Profiling	Phosphorylation Profiling
Detection Methods	Fluorescent	Fluorescent
Solid Support	Glass Slide	Glass Slide
Design Principle	Direct Labeling (Biotin)	Direct Labeling (Biotin)
Data Type	Semi-quantitative	Semi-quantitative
# of Analytes	60 - 1,358	40 - 1,318
SPECIES	Human	Human, Mouse, Rat

Raybiotech Antibody Array

	L-Series	G-Series
Detection Methods	Fluorescent	Fluorescent
Solid Support	Glass Slide	Glass Slide
Design Principle	Direct Labeling (Biotin)	Sandwich ELISA
Data Type	Semi-quantitative	Semi-quantitative
# of Analytes	50 - 8,000	10 - 1,200
SPECIES		Human, Mouse, Rat, Porcine,
	Human, Mouse, Rat, Rabbit	Canine, Feline, Bovine, Equine,
		Non-human primate(monkey),
		Rabbit, Ovine, Chicken, Dolphin

5. 참고문헌

- 1. Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers for drug delivery. *J Control Release*. 2015;219:396-405.
- 2. Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. *Cell Metab.* 2021;33(9):1744-1762.
- 3. Jella KK, Nasti TH, Li Z, Malla SR, Buchwald ZS, Khan MK. Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. *Vaccines (Basel)*. 2018;6(4):69.
- 4. Han MH, Kang MH, Hwang YS, Kim JW. Current trends and future directions in exosome research and commercialization. *Korean Soc Biotechnol Bioeng J.* 2025;40(2):105-118.
- 5. Yadav R, Singh AV, Kushwaha S, Chauhan DS. Emerging role of exosomes as a liquid biopsy tool for diagnosis, prognosis and monitoring treatment response of communicable and non-communicable diseases. *Indian J Med Res.* 2024;159(2):163-180.
- 6. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. *J Control Release*. 2015;207:18-30.
- 7. Langevin S, Kuhnell D, Parry T, Biesiada J, Huang S, Wise-Draper T, et al. Comprehensive microRNA-sequencing of exosomes derived from head and neck carcinoma cells in vitro reveals common secretion profiles and potential utility as salivary biomarkers. *Oncotarget*. 2017;8(47):82459-82474.
- 8. Liu P, Wang W, Wang F, Fan J, Guo J, Wu T, et al. Alterations of plasma exosomal proteins and metabolites are associated with the progression of castration-resistant prostate cancer. *J Transl Med.* 2023;21:40.
- 9. Jung HH, Kim JY, Lim JE, Im YH. Cytokine profiling in serum-derived exosomes isolated by different methods. *Sci Rep.* 2020;10:14069.

