Version 3.0

RNA-Seq/Microarray DEG Analysis

(주)이바이오젠

서울특별시 영등포구 선유로13길 25 (문래동6가), 에이스하이테크시티2, 305호 Tel. 02-3141-0791 <u>service@e-biogen.com</u> http://www.e-biogen.com

<목 차>

1. 엑셀기반 DEG 분석 (ExDEGA v.1.6.0)

2. Web 기반 Gene Set Enrichment 분석

- 2-1. DAVID tool을 이용한 Functional Annotation 분석
- 2-2. String-db tool을 이용한 gene set분석
- 2-3. MSigDB기반 GSEA 분석
- 3. KEGG DB 기반 Pathway 분석
- 4. MeV Software 이용 Clustering Heatmap 작성

1. 엑셀기반 DEG 분석 (ExDEGA v.1.6.0)

㈜이바이오젠은 QuanSeq, mRNA-Seq, Total RNA-Seq 과 Micorarray data 를 엑셀 기반에서 DEG 를 쉽게 분석할 수 있도록 분석보고 시 ExDEGA (Excel based Differentially Expressed Gene Analysis) tool 을 함께 제공한다. ExDEGA 분석툴은 ㈜이바이오젠이 연구자들이 Microarray 및 RNA-Seq 데이터를 보다 쉽게 다루고 원하는 데이터를 쉽게 얻을 수 있도록 사용자 편의를 최대한 반영한 분석툴이고 엑셀 프로그램 안에서 다양한 분석을 직관적으로 수행할 수 있도록 개발되었다. ExDEGA 분석툴은 사용자들의 요구사항을 지속적으로 반영하여 데이터분석과 엑셀사용에 익숙하지 못한 연구자들도 쉽게 사용이 가능하도록 계속 업데이트 될 예정이다. 이바이오젠에서 제공하는 Microarray data 와 RNA-Seq data (엑셀 데이터)를 열기 전에 함께 제공한 ExDEGA(버전).zip 파일의 압축을 풀고 setup 을 실행하면 분석툴이 설치된다(그림 1-1). 설치가 완료되면 보고된 엑셀데이터를 열면 자동으로 ExDEGA 분석툴이 엑셀에 반영된 것을 확인할 수 있다. 참고로 ExDEGA 설치 전에 실행 중인 엑셀 파일이 있으면 종료시킨 후 다시 실행해야 ExDEGA를 사용할 수 있다.

그림 1-1. ExDEGA set up

??? ExDEGA Report.xls 파일을 열면 왼쪽에 Gene Ontology (GO) 분석 창과 가운데에 mRNA expression data, 오른쪽에 DEG 분석 창이 나온다(그림 1-2).

GO 분석 창에서는 기본 설정된 GO 와 사용자가 원하는 대로 GO 를 구성하여 분석할 수 있고 DEG 분석과 함께 연동하여 데이터를 쉽게 얻을 수 있다. DEG 분석 창에서는 Fold change, Normalized RC, p-value 등을 선택하여 원하는 데이터를 쉽게 얻을 수 있고 GO graph 를 통해 전체적인 발현패턴을 확인할 수 있다. 뿐만 아니라, DEG 분석 창에서 Scatter Plot, Volcano Plot, Venn Diagram 을 직접 그릴 수 있고 필터링된 유전자들을 대상으로 Clustering heatmap 을 작성하기 위한 MeV 프로그램 input file 을 자동으로 만들 수 있고 Gene expression graph, Gene search 기능도 이용할 수 있어 연구자가 RNA-Seq data 를 쉽게 활용할 수 있다.

그림 1-2. mRNA expression data format made in E-Biogen

1-1. Gene Category 사용 방법

mRNA expression data 는 수 만개의 유전자를 포함하기 때문에 유전자를 한 개씩 분석하기 보다 기능별로 그룹을 지어 분석을 하는 것이 용이하다. 이를 위해 많은 연구자들이 gene ontology (GO)를 활용한다. GO 는 비슷한 기능의 유전자들을 묶어 놓은 그룹이라고 생각하면 이해하기 쉽다.

Gene Category 창은 수많은 GO 중 임의로 15개를 선택하여 관련 유전자를 필터링 할 수 있도록 만들어 놓은 것이다. 예를 들어, Aging 관련 유전자만 분석을 원할 경우, Gene Category 창에서 Aging 을 선택하면 해당 유전자 리스트만 필터링 된다(그림 1-3).

그리고 Gene Category 의 여러 항목들을 동시에 만족하는 유전자를 필터링할 수 있고 적어도 한 항목만이라도 포함하는 유전자를 보고자 하는 경우도 필터링이 가능하도록 "AND"와 "OR" 기능을 갖추고 있다.

* X		A	В	C	D	E	F	G	н		J	K	L	M	N	0
	1	259			Fold ch	ange			p-val	ue			Average	of Normalized R	C (log2)	
View All Data	2	ID 🛒	Gene Symbo*	A/Conti 🔆	B/Conti 📜	B/A 🛫	D/C	A/Contr 🗧	B/Contr 📜	B/A	D/C	Control 🖕	A	в 🗸	C 🗸	D
Casa Catagoni	1775	1773	Abat	0.793	0.890	1.122	1.898	0.205	0.027	0.723	0.147	9.232	8.899	9.064	9.310	10.23
Gene Category	1989	1987	Ada	0.828	0.857	1.035	0.426	0.410	0.022	0.040	0.028	9.367	9.095	9.145	12.675	11.44
✓ Aging	2094	2092	Adm	0.587	0.722	1.230	0.232	0.057	0.262	0.049	0.061	8.505	7.737	8.035	5.110	3.00
Angiogenesis	2108	2106	Adra1a	1.097	0.846	0.771	0.873	0.286	0.023	0.040	0.011	11.544	11.678	11.304	3.899	3.70
	2116	2114	Adrb3	0.935	0.989	1.058		0.819	0.944	0.042	0.040	9.378	9.281	9.363	11.878	9.29
Apoptotic process	2181	2179	Agt	1.169	0.891	0.762	0.222	0.497	0.044	0.324	0.111	5.895	6.120	5.728	2.672	0.49
Cell orcle	2183	2181	Agtr1a	0.923	0.557	0.604	5.280	0.432	0.173	0.219	0.074	10.984	10.868	10.139	4.796	7.19
	2308	2306	Akt1	0.988	1.040	1.053	0.987	0.802	0.000	0.044	0.048	14.471	14.452	14.527	12.348	12.33
Cell death	2328	2326	Aldh3a1	0.632	0.552	0.874	0.260	0.110	0.009	0.045	0.107	12.316	11.653	11.460	8.772	6.82
Cell differentiation	2367	2365	Alox12	0.682	0.737	1.081	0.852	0.032	0.140	0.712	0.293	9.203	8.652	8.764	8.198	7.96
	2402	2400	Amfr	1.000	0.977	0.977	0.469	0.000	0.088	0.001	0.037	13.080	13.080	13.045	11.417	10.32
Cell migration	2403	2401	Amh	0.681	2.794	4.101	1.050	0.523	0.219	0.146	0.017	3.548	2.995	5.031	5.470	5.54
Cell proliferation	2469	2467	Ankle1	1.760	2.715	1.543	0.840	0.217	0.006	0.032	0.035	3.529	4.345	4.970	8.828	8.57
	2592	2590	Apaf1	1.239	1.083	0.875	0.304	0.187	0.040	0.440	0.008	10.751	11.060	10.867	13.604	11.88
DNA repair	2605	2603	Apex1	0.965	1.292	1.339	1.203	0.336	0.210	0.173	0.189	9.431	9.379	9.801	13.370	13.63
Extracellular matrix	2634	2632	Apod	0.640	0.932	1.456	0.294	0.037	0.049	0.029	0.022	9.585	8.941	9.483	10.581	8.81
	2698	2696	Arg1	1.384	0.774	0.560	3.447	0.234	0.478	0.205	0.500	5.052	5.520	4.683	0.000	1.78
Immune response	2957	2955	Atg7	1.067	1.040	0.975	1.024	0.157	0.796	0.026	0.025	12.788	12.882	12.845	12.001	12.03
Inflammatory response	2965	2963	Atm	1.150	0.942	0.819	1.038	0.206	0.041	0.268	0.476	9.501	9.703	9.415	11.610	11.66
	2967	2965	Atn1	1.124	0.866	0.771	1.320	0.168	0.037	0.324	0.179	13.817	13.985	13.609	14.134	14.53
Neurogenesis	2995	2993	Atp2b1	1.013	0.824	0.814	0.959	0.045	0.000	0.037	0.033	12.416	12.434	12.137	11.775	11.71
RNA splicing	3049	3047	Atp8a2	1.283	1.022	0.796	1.182	0.194	0.856	0.044	0.042	5.129	5.488	5.160	5.078	5.31
	3061	3059	Atr	0.978	0.898	0.918	0.942	0.047	0.133	0.181	0.319	9.364	9.332	9.208	10.770	10.68
Secretion	3100	3098	Aurkb	1.071	1.368	1.277	1.131	0.026	0.167	0.058	0.152	7.273	7.373	7.725	13.114	13.29
cell growth	3238	3236	Bak1	1.046	1.070	1.023	1.311	0.586	0.914	0.048	0.068	11.775	11.839	11.872	14.094	14.48
	3267	3265	Bbc3	0.994	1.528	1.538	0.235	0.002	0.022	0.000	0.025	9.330	9.321	9.942	12.002	9.91
AND OD	3401	3399	Bcl2	1.185	0.871	0.735	0.900	0.187	0.082	0.044	0.044	10.477	10.722	10.277	6.259	6.10
IND OR	3436	3434	Becn1	0.991	1.083	1.093	0.744	0.773	0.026	0.046	0.169	10.938	10.925	11.053	10.723	10.29
	3559	3557	Brca2	1.166	0.934	0.801	1.092	0.368	0.624	0.326	0.054	8.479	8.700	8.380	14.476	14.60
	3759	15929	Pck1	0.391	1.248	3.194	3.466	0.286	0.042	0.046	0.214	9.897	8.542	10.217	0.602	2.39
Gene Category Settings	3803	3801	Carvhn	0.810	1.226	1.513	1.309	0.017	0.044	0.201	0.124	8.967	8.664	9.261	11.525	11.91

그림 1-3. Gene ontology (Aging) selection

'View All Data' 버튼을 누르면 필터를 해제하여 다시 전체 결과를 볼 수 있고 15개의 GO 중 관심 기능이 없다면 'Gene Category Settings' 버튼을 이용하여 Quick GO site 에서 다른 GO를 추가할 수 있다(그림 1-4). '?' 버튼을 누르면 GO 추가하는 방법이 자세히 설명되어 있다.

▼ ×		Gene Category Settings		· · · · · · · · · · · · · · · · · · ·	н	- I	J	К	L	N
	1				alized RC			Normalized	d RC (log2)	
View All Data	2	Aging	^	Custom Category) C	• A1 •	A2 💌	B1 💌	B2 💌	c
Cons Catogony	178			New	12.7	57 12.349	12.710	12.717	12.668	12
Gene category	202				3.1	4.350	4.125	3.672	4.273	2
O AND O OR	242	Apoptotic process		Delete	11.5	11.088	11.273	11.088	11.046	11
	252			Edit	8.2	50 8.538	8.433	7.950	8.399	8
^	270	Cell cycle		Luit	12.1	12.571	13.050	12.468	13.196	11
Aging	350				13.7	13.802	14.558	12.890	13.904	13
Angiogenesis	355	Cell death		QuickGO	14.6	79 14.230	14.218	14.706	14.284	14
	362			Import	11.8	70 11.971	12.371	11.585	12.212	11
Apoptotic process	401				14.3	39 13.792	13.545	14.170	13.556	14
	458	Cell migration		Web ?	13.2	75 13.218	13.493	13.070	13.379	13
Cell cycle	473				10.1	9.983	8.603	10.979	10.112	10
	585	Cell proliferation			3.9	4.582	4.359	3.261	2.836	4
Cell death	598				9.1	9.191	9.354	8.615	9.688	8
Cell differentiation		DNA repair			1.0	3.902	3.626	5.252	5.417	1
		Extracellular matrix			10.5	37 10.404	10.806	10.684	11.137	10
Cell migration	173				7.0	7.001	7.006	6.358	6.137	6
	864	Immune response			11.6	12.093	12.001	11.653	12.085	11
Cell proliferation	884				9.1	9.193	7.948	9.114	8.363	8
	904	Inflammatory response			10.6	75 10.229	9.676	10.548	10.039	10
	1003				14.1	32 15.003	15.164	14.601	15.237	13
Gene Category Settings	1066	Neurogenesis	\sim		10.2	10.468	10.405	10.700	10.397	10
	1108				2.0	0.000	2.025	0.028	0.009	2

그림 1-4. Gene category settings

만약 원하는 유전자 그룹 목록이 있다면, 직접 입력하여 새로운 Gene Category 를 추가할 수도 있다. Gene Category Settings 버튼을 누른 후 New 를 선택하고 원하는 gene list 입력(or 복사-붙여넣기) 한 뒤, Gene category 이름 설정 후 저장하면 새로운 GO category 를 확인 할 수 있다(그림 1-5-a,b).

그림 1-5-a. Adding Genes to make a new gene category

Gene Category Settings	X	▼ ×		А	В	С	D
			1	Filter: 457	F	old change	
Cell cycle	Custom Category	View All Data	2	Gene symbol	A/C 🔽	B/C 💌	B/A
Cell death	New	0	645	COL9A2	0.288	0.300	0.28
		Gene Category	661	EDN2	0.377	0.152	0.37
Cell differentiation	Delete		723	PTCH2	0.494	0.572	0.49
	Edit	C AND O'CK	966	NEXN-AS1	0.435	1.108	0.43
Cell migration			974	IFI44	2.001	5.216	2.00
Cell proliferation	이바이오젠		975	ADGRL4	2.490	1.986	2.49
			1237	PTPN22	23.460	17.738	23.46
DNA repair	유전자 그룹 설정이 변경 되었습니다. 엑셀 파일을 즉시 저장 하시겠습니까?	Extracellular matrix	1331	TXNIP	2.506	3.261	2.50
			1370	LOC101060524	6.699	2.311	6.69
Extracellular matrix		Immune response	1371	DRD5P2	6.699	2.311	6.69
	에(위) 아디보(N)		1436	PSMD4	2.018	0.991	2.01
		Inflammatory response	1721	LOC101928372	0.470	0.338	0.47
Inflammatory response		Neurogenesis	1999	LHX9	0.355	1.667	0.35
			2037	PTPN7	0.478	0.568	0.47
Neurogenesis		RNA splicing	2107	SLC26A9	0.468	0.764	0.46
		_	2271	WNT3A	0.268	0.518	0.26
RNA splicing		Secretion	2410	NLRP3	2.629	1.474	2.62
Garretian			2486	LINC00704	2.777	3.115	2.77
		New category	2490	AKR1C1	2.498	0.923	2.49
New category			2506	IL15RA	2.450	1.717	2.45
	V	Gene Category Settings	2562	OLAH	2.323	1.012	2.32
			2717	CXCL12	0.498	4.046	0.49

그림 1-5-b. Adding Genes to make a new gene category

1-2. Significant Gene Selection 사용 방법

오른편의 DEG Analysis 부분에서 "Significant Gene Selection" 창은 전체 결과 중 control 과 test 를 비교한 결과에서 유의하게 발현 차이가 나는 유전자를 필터링 할 수 있도록 만들어 놓은 것이다. 예를 들어, control 기준으로 A 에서 발현이 2 배 이상 증가 또는 감소하고, normalized RC(log)값이 4 이상이고, t-test 결과 p-value 값이 0.05 이하인 유전자(반복 실험한 데이터의 경우)를 선택하면 95 개의 유전자가 필터링 된다(그림 1-6).

그리고 여러 개의 비교그룹에서 동시에 Significant gene 을 선별하고자 할 경우와 적어도 한 비교그룹에서 Significant gene 을 선별하고자 할 경우에는 "AND"와 "OR" 기능을 사용하면 된다.

	A	В	С	D	E	F	G	н	I	J	К	L	M	N	0	P			
1	Filter: 95			Fold cf	iange			p-val	Je			Average of	Normalized RC	(log2)					*
2	ID ,T	Gene Symbo'	A/Conti 🔅	B/Conti	B/A	D/C 🚽	A/Contr 📜	B/Contr 📜	B/A	D/C 🖕	Control	A	в	C 🕌	D 🗸	Control:		DEG Analy	ysis
76	15849	Pcdh10		1.002	21.807	0.139	0.031	0.000	0.093	0.123	4.510	0.066	4.513	6.215	3.367	3.14	0		
80	5476	Cyp2b9	i actor	0.925	26.970	1.000	0.024	0.849	0.027	1.000	5.821	0.956	5.709	0.000	0.000	4.21	Signit	hcant Gene Se	ection
176	5519	Cyp3a11	0.006	0.121	1.979	1.000	0.044	0.036	0.044	1.000	4.150	0.000	0.985	0.000	0.000	5.10			
895	13488	Mup17	0.348	diam'n a starte	0,225	0.414	0.002	0.001	0.003	0.500	4.129	2.606	0.456	1.271	0.000	4.29	Fold	change	
1024	8470	Gm14812	0.356	0.276	0.776	0.493	0.044	0.091	0.658	0.500	4.086	2.596	2.230	1.020	0.000	4.49		2.0	÷
1079	423	1700102P08Rik	0.356	1.370	3.846	0.894	0.049	0.040	0.046	0.590	4.439	2.950	4.894	6.295	6.134	4.83			
1407	9256	Gm9758	0.219	1.022	4.673	0.879	0.016	0.798	0.117	0.500	5.096	2.902	5.127	0.186	0.000	4.36	Nor	nalized RC (I	002)
1636	10288	Htr3a	0.399	1.567	3.927	0.845	0.000	0.000	0.000	0.024	4.628	3.302	5.276	6.692	6.449	0.00	1401	manized ree (oge/
1913	20975	Tmem202	0.417	0.745	1.786	1.000	0.044	0.115	0.454	1.000	4.669	3.406	4.243	0.000	0.000	5.87		4	•
2845	8350	Gm13279	0.358	0.484	1.350	0.148	0.006	0.186	0.047	0.493	5.828	4.347	4.780	2.757	0.000	5.92			
2849	712	2700086A05Rik	0.440	0.528	1.200	1.076	0.042	0.055	0.040	0.005	4.508	3.325	3.588	2.193	2.299	4.61	p-va	lue	
2909	4186	Ccno	0.369	0.272	0.738	0.304	0.012	0.054	0.352	0.122	9.061	7.623	7.185	6.042	4.324	9.42		0.050	
3124	174	1700012B09Rik	0.378	1.331	3.522	0.411	0.020	0.950	0.259	0.506	6.340	4.936	6.752	2.583	1.301	6.60		010.00	
3247	21203	Tnni1	0.446	1.222	2.742		0.022	0.836	0.038	0.285	4.862	3.695	5.150	6.083	3.286	4.77	Com	pla / Control	
3510	8740	Gm20878	0.390	2.689	6.895	0.765	0.034	0.027	0.026	0.014	13.665	12.306	15.092	8.479	8.093	12.42	Salli	pie / control	
3655	8755	Gm21586	0.390	2.689	6.895	0.765	0.006	0.801	0.007	0.029	13.665	12.306	15.092	8.479	8.093	12.42		Name	e
3718	8364	Gm13308	0.390	2.688	6.892	0.765	0.032	0.257	0.046	0.000	13.665	12.307	15.092	8.479	8.093	12.43	177		
4097	6419	E330023G01Rik	0.411	0.431	1.049	0.192	0.050	0.618	0.039	0.216	5.240	3.955	4.024	6.235	3.857	1.55	~	A/Control	S
4154	17019	Prss16	0.463	0.364	0.787	0.681	0.037	0.125	0.116	0.253	4.023	2.912	2.567	8.626	8.073	0.97		B/Control	
4188	2847	Art5	0.411	1.020	2.482	0.330	0.009	0.050	0.295	0.170	5.219	3.936	5.247	7.485	5.885	5.21	100	D.(A	
4840	4938	Cntf	0.440	0.475	1.079	0.734	0.005	0.139	0.044	0.221	5.649	4.464	4.574	6.695	6.249	5.69		B/A	
4940	8353	Gm13285	0.445	0.281	0.632	dames -	0.032	0.011	0.146	0.500	7.408	6.240	5.579	4.665	0.000	7.33		D/C	
4964	4422	Cdkn1a	0.445	0.640	1.437	0.279	0.019	0.117	0.198	0.017	14.318	13.151	13.673	14.296	12.453	14.15			
5090	7599	Foxn4	0.456	0.213	0.468	0.882	0.029	0.008	0.046	0.131	6.674	5.541	4.446	10.475	10.293	6.99			
5115	19817	Spon2	0.457	1.025	2.242	0.147	0.029	0.938	0.033	0.031	10.478	9.349	10.514	8.538	5.774	10.03			
5412	9701	Gucy2g	0.465	0.886	1.905		0.047	0.048	0.044	0.098	5.455	4.350	5.280	6.252	3.714	5.18			
5475	21929	Upk1a	0.467	0.390	0.835	0.884	0.030	0.008	0.172	0.449	7,923	6.825	6.564	8.386	8.208	8.12			
5478	600	2310039L15Rik	0.484	1.455	3.005	0.637	0.048	0.093	0.000	0.477	4.158	3.111	4.699	5.016	4.364	5.52	(AND O	OR
5974	4152	Ccl27b	0.472	1.988	4.210	0.850	0.014	0.001	0.019	0.399	14.414	13.331	15.405	10.608	10.374	13.19			
6038	8363	Gm13306	0.472	1.988	4.210	0.850	0.029	0.185	0.063	0.399	14.414	13.331	15.405	10.608	10.374	13.19			
6328	11637	00100861978	0.472	1.988	4,210	0.850	0.038	0.038	0.032	0.399	14.414	13.331	15.405	10.608	10.374	13.19 *			
4	je -	Data info	+								4					Þ.	Filter	Gene Catego	bry Chart

그림 1-6. Significant gene selection

Gene Category 와 Significant gene selection 은 연동 가능하다. 그림 1-7 에서 처럼 Gene Category 의 Cell differentiation 을 선택하면 10 개의 유전자가 필터링 된다(그림 1-7). 10 개의 유전자는 본 데이터에서 Cell differentiation 관련 유전자들 중 A/Control 비교그룹에서 유의하게 발현이 증가 또는 감소한 유전자를 의미한다.

그림 1-7. Significant genes related to Cell cycle

실험 결과에 따라 발현 변화값 (fold change), p-value, normalized RC(log2) 기준을 조정할 수 있고 반복 실험인 경우만 p-value 를 선택할 수 있다.

"View Gene Category Chart" 버튼을 누르면 각 GO 관련 유전자 중 발현이 유의하게 차이 나는 유전자의 %와 수가 그래프로 그려진다. 본 분석을 통해 어떤 GO의 유전자들이 상대적으로 많은 발현 변화가 있었는지를 확인할 수 있다. 전체 데이터 상태에서 Significant Gene Selection 의 비교 그룹을 선택하고 "View Gene Category Chart"를 클릭하면 증가/감소한 유전자 들 대상으로 GO Chart 가 생성된다. 그래프의 각 영역을 클릭하면 해당 유전자들이 필터링 된다. 예를 들어 왼쪽의 Pie chart 의 특정영역을 클릭하면 해당 GO 의 증가/감소된 유전자가 함께 필터링 되고 오른쪽의 증가/감소된 bar chart 에서 bar 상단의 숫자는 해당 유전자 수이고 bar 를 클릭하면 해당 유전자가 필터링 된다(그림 1-8).

그림 1-8. View Gene Category Chart

1-3. Analysis Graph 사용 방법

DEG Analysis 부분에서 "Analysis Graph" 창을 펼치면 아래 그림 1-9 와 같이 Scatter Plot, Volcano Plot, Venn Diagram 을 엑셀에서 쉽게 그릴 수 있다.

	DEG Analysis
•) Significant Gene Selection
\odot) Analysis Graph
	Scatter Plot
	Volcano Plot
	Venn Diagram

그림 1-9. Analysis Graph Tool

첫번째 Scatter Plot은 오른쪽에 샘플 비교그룹을 선택하고 Fold threshold line 을 선택하고 "Graph View"를 클릭하면 왼쪽에 선택한 비교그룹을 대상으로 Scatter Plot 이 자동 생성된다. Plot 에서 특정 spot을 클릭하면 해당 유전자가 표시되고 마우스 오른쪽을 클릭하여 표시를 지울 수도 있다. 그리고 여러 개의 유전자를 동시에 표시하고 싶다면 "Gene Select(ID Input)" 창에 해당 유전자 ID를 복사하여 입력하고 "Add"를 클릭하면 Gene Symbol 이 자동 생성된다(그림 1-10).

그림 1-10. Analysis Graph Tool - Scatter Plot

두번째 Volcano Plot 은 Scatter Plot 의 기능과 거의 동일한데 오른쪽에 샘플 비교그룹을 선택하고 Fold threshold line 과 p-value 를 선택하고 "Graph View"를 클릭하면 왼쪽에 선택한 비교그룹을 대상으로 Scatter Plot 이 자동 생성된다. Plot 에서 특정 spot 을 클릭하면 해당 유전자가 표시되고 마우스 오른쪽을 클릭하여 표시를 지울 수도 있다. 그리고 여러 개의 유전자를 동시에 표시하고 싶다면 "Gene Select(ID Input)" 창에 해당 유전자 ID 를 복사하여 입력하고 "Add"를 클릭하면 Gene Symbol 이 자동 생성된다(그림 1-10).

그림 1-11. Analysis Graph Tool - Volcano Plot

세번째 Venn Diagram 을 통해 2 개, 3 개 또는 4 개 까지의 비교그룹을 대상으로 Venn Diagram 을 작성할 수 있다. Venn Diagram 을 그릴 샘플 비교그룹과 Fold Change, p-value(반복실험시)을 선택 후, Diagram View 를 클릭하면 결과를 확인할 수 있으며 그룹은 최대 4 그룹까지 선택 가능하다. 아래의 그림은 A/C 와 B/C, B/A 결과 중, 2fc 이상 up, down 된 list 를 가지고 Venn Diagram 을 작성한 결과이다(그림 1-12).

그림 1-12. Analysis Graph Tool - Venn Diagram

Venn Diagram 결과에서 표시되는 형식은 다음과 같다(그림 1-13).

- 1. *기울어진 숫자* : 2fold 이상 up-regulated 된 gene 수
- 2. 빨간색 숫자 : regulation 이 대조되는 gene 수
- 3. **밑줄 친 숫자** : 2fold 이상 down-regulated 된 gene 수

그림 1-13. For example of up ,down, contra-regulated in Venn Diagram

Venn Diagram 이미지를 오른쪽 클릭하면 Venn Diagram 각 영역에 어떤 유전자들이 있는지 확인할 수 있다. 예를 들어, A/C 에서만 2fold up 이 되는 유전자를 보고 싶으면, Venn Diagram 에서 A/C 에서만 해당되는 영역을 찾아 마우스 오른쪽 클릭 하면 2fold up 된 유전자 list 4 개가 엑셀 sheet 에 filter 된다(그림 1-14).

그림 1-14. Filtering 2fold up-regulated gene list in Venn Diagram

ExDEGA 에서 제공되는 모든 이미지는 오른쪽마우스를 눌러 'Save image' 버튼을 통해 저장이 가능하다(그림 1-15).

그림 1-15. Save image

1-4. Clustering Heatmap Support 사용 방법

ExDEGA 의 DEG Analysis 에서는 Significant Gene Selection 또는 Venn Diagram 등을 통해 Data Mining 을 수행한 후 정리된 유전자 리스트를 대상으로 Clustering Heatmap 을 쉽게 작성할 수 있도록 지원한다.

당사에서 추천하는 Clustering Heatmap 프로그램은 MeV 인데 ExDEGA 에서 MeV 용 Input file 을 자동 생성해 주고 MeV 에서 해당 파일을 불러오면 된다. 이후의 Clustering 방법 및 이미지 가공 및 저장 방법은 본 매뉴얼 "4. MeV Software 이용 Clustering Heatmap 작성" 부분을 참고하면 된다.

그림 1-16 에서 필터링된 유전자 리스트를 대상으로 Clustering Heatmap 을 작성하려면 크게 2 종류의 데이터를 이용할 수 있는데 첫번째는 Fold change 값을 이용할 시 Type 부분에 Fold change 를 체크하고 Export Data Select 에서 Heatmap 에 표현할 비교그룹을 체크하여 "Data Export"를 클릭한 후 "???.txt"로 저장하면 된다. 두번째는 발현값(Raw Data(RC))으로 표현하고자 할 때 Raw Data 를 체크하고 샘플이 3 개 이상이면 z-score 를 체크하고 샘플이 2 개면 median 을 체크하고 Export Data Select에서 Heatmap에 표현할 비교그룹을 체크하여 "Data Export"를 클릭한 후 "???.txt"로 저장하면 된다.

	1	A	В	C	D	E	F	G	н	1 7	Clustering Heatmap Support	м	N	0	P .	_
* ×	1	Filter: 64			Fold ch	ange			p-val	lue		of Normalized RC	(log2)			
View All Data	2	ID J	Gene Symbo*	A/Conti 🗧	B/Conti	в/А 🖕	D/C	A/Contr 🗧	B/Contr 🖕	B/A	Туре	в	C 🔍	D	Control	DEG Analysis
Gene Category	1794	1792	Abcb1a	0.956	0.798	0.835		0.008	0.239	0.14	Foldchange	10.914	11.582	8.003	11.3	
Gene category	2534	16330	Pitx2	0.334	0.484	1.450	0.340	0.085	0.352	0.03	Version of the second	4.679	9.506	7.949	5.5	Clustering Heatmap Support
Aging	2553	2551	Anxa7	0.997	0.994	0.996	0.364	0.043	0.326	0.11	Raw Data (RC)	14.142	14.419	12.961	14.2	
Angiogenesis	3406	3404	Bcl2l1	0.802	0.989	1.233	0.301	0.172	0.852	0.04		12.839	12.485	10.754	13.0	Type
Anglogenesis	3458	3456	Bglap2	0.709	1.186	1.672	- Admir	0.014	0.075	0.03	• Z-Score	4.572	5.958	0.922	5.4	Eoldshange
Apoptotic process	3509	3507	Bmp7	0.868	0.851	0.980		0.479	0.400	0.04	O Madian	7.551	10.560	8.551	7.7	© Polucitarige
Cell cycle	3903	3901	Card11	1.604	1.444	0.900		0.055	0.083	0.03	O ivieulari	10.679	4.941	2.086	9.9	C Raw Data (RC)
	4233	4231	Cd180	1.481	1.279	0.864		0.046	0.917	0.03		9.144	5.385	2.233	8.6	0
Cell death	4274	4272	Cd34	0.966	0.821	0.850	0.280	0.483	0.378	0.44		13.482	9.806	7.970	13.7	• Z-Score
Cell differentiation	4303	4301	Cd74	1.368	1.368	1.000	0.243	0.070	0.341	0.04	Export Data Select	18.637	13.831	11.790	17.9	O Median
	4739	4737	Cks1b	1.071	2.104	1.963	1.060	0.047	0.021	0.07		8.073	11.844	11.928	7.2	
Cell migration	4861	4859	Clu	0.846	0.784	0.927		0.240	0.067	0.03	Name	13.747	12.194	10.204	14.2	
Call proliferation	5320	5318	Ctgf	1.209	0.840	0.695		0.429	0.044	0.24	A/Control	12.994	12.352	9.532	13.3	Export Data Select
Cell promeration	5788	5786	Ddit4	0.974	1.177	1.209		0.012	0.028	0.09	Avcontrol	9.920	11.008	7.720	8.8	Nama
DNA repair	6052	6050	DIx5	0.491	2.239	4.563		0.223	0.039	0.31	B/Control	5.726	7.699	5.161	4.5	
Extracollular matrix	6545	6543	Egfr	0.886	0.691	0.781		0.441	0.206	0.34		10.863	10.452	6.652	11.5	A/Control
	6772	6770	Ephb1	1.040	2.002	1.925	1.141	0.001	0.040	0.00	B/A	7.122	2.931	3.121	6.0	R/Control
Immune response	7478	7476	Fign11	1.309	2.002	1.530	1.019	0.119	0.008	0.05		7.060	12.793	12.819	6.0	U byconnor
Inflammatony recoonse	7661	7659	Fst	0.688	0.653	0.950		0.220	0.192	0.04	D/C	7.947	10.499	6.936	8.9	B/A
	8033	8031	GI12	1.313	1.138	0.867	2.171	0.145	0.821	0.03		8.845	13.873	14.991	8.6	D/C
Neurogenesis	8357	8355	Gm13287	0.506	0.330	0.653		0.086	0.005	0.19		3.116	2.782	0.000	4.7	0/0
PNA rolicino	9288	9286	Gmnc	0.630	0.370	0.587		0.199	0.035	0.23		6.209	3.861	0.000	7.6	
	9525	9523	Gpx1	1.026	1.150	1.121	0.378	0.461	0.151	0.23		14.278	15.515	14.112	14.0	
Secretion	9881	9879	Hdgfrp3	1.066	1.020	0.957	0.196	0.166	0.801	0.04		9.842	9.814	7.461	9.8	
Call arouth	9949	9947	Hhex	1.048	0.849	0.811	0.465	0.038	0.031	0.05		10.897	12.621	11.516	11.0	
	9950	9948	Hhip	1.153	0.833	0.722	0.279	0.122	0.032	0.21		10.540	8.910	7.068	10.8	
S. 110 O 00	10341	10339	Id2	1.263	1.234	0.977		0.024	0.846	0.72		12.934	11.246	8.868	12.7	
• AND O OR	10702	10700	Irs2	1.237	0.827	0.669	0.316	0.087	0.469	0.26		10.963	11.489	9.828	11.3	
	10749	10747	Itgam	1.414	1.336	0.945		0.004	0.047	0.66	Data Carat	11.793	8.114	5.945	11.4	Data Supert
	10755	10753	Itgb2	1.530	1.674	1.094		0.008	0.073	0.66	Data Export	12.840	6.906	3.178	11.9	Data Export
Gene Category Settings	10778	10776	Itokb	1.037	0.959	0.925	(1, 193	0.513	0.044	0.24	INFIT DATA DATA	19.919	9.656	7.286	12.7 *	
			Data info	(+)							1				F	0

그림 1-16. Clustering Heatmap Support

1-5. Selected Gene Plot & Gene Search 사용 방법

ExDEGA 의 기능 중에 선별한 유전자 또는 연구자가 관심있는 유전자들을 대상으로 발현패턴을 그래프로 표현하고자 할 때는 "Selected Gene Plot" 기능을 사용하면 된다.

선별한 유전자의 gene symbol 을 복사하여 Selected Gene Plot 창에 붙여 넣고 "Expression Plot View"를 누르면 normalized RC(log2) 값, fold change 값으로 line graph 가 그려진다(그림 1-17). 그리고 특정 keyword 관련 유전자를 검색하고 싶을 때는 gene search 창을 이용하면 된다. 예를 들어 'insulin'을 검색하면 엑셀 Data Sheet 에 'insulin' keyword 을 포함하는 모든 유전자가 검색되어 필터링 된다(그림 1-18).

그림 1-17. Gene graph

1	Α	В	С	D	E	F	G	н	1	J	K	L	M	N	0	P	Q	R	S	*		
1	Filter: 36			Fold ch	nange			p-va	lue		1	Average of	Normalized	l RC (log2)							*	×
2	IC ,7	Gene symb 🚦	B /Cor	E232-25 /Con *	E305-100 /Con *	LPS /Co	B/Co 🕌	E232-25 /Cor 👻	E305-100 /Con *	LPS /C	Con 🗸	8 👻	E232-25	E305-1**	LPS 🖵	Con-f	B831-	E232-2	E305-100- 1 *	DE	G Analysis	
375	373	lgfbp2	0.747	0.385	0.384	0.596	0.570	0.017	0.017	0.222	1.397	0.975	0.019	0.016	0.650	1.510	0.000	0.000	0.000	~		
376	374	lgfbp5	1.337	0.715	0.305	0.427	0.811	0.750	0.409	0.488	1.745	2.164	1.261	0.033	0.517	2.485	2.994	1.902	0.000	Significan	t Gene Selecti	ion
458	456	Irs1	1.699	0.709	0.623	0.724	0.704	0.756	0.644	0.771	1.929	2.694	1.432	1.247	1.463	2.693	3.578	2.111	1.303	0		
685	683	Insig2	0.756	0.983	1.091	0.877	0.661	0.980	0.902	0.817	9.202	8.799	9.178	9.327	9.012	8.483	8.150	8.283	8.403	Analysis C	iraph	
1999	1997	lgf1	0.547	0.460	0.484	0.481	0.451	0.311	0.340	0.380	13.831	12.961	12.711	12.784	12.774	14.318	13.550	12.740	13.073	Chustering	Linetonen Com	
2484	2482	lgfbp1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Clustering	nearmap out	pport
2485	2483	Igfbp3	0.674	0.883	1.213	3.131	1.000	0.755	0.750	0.477	0.569	0.000	0.390	0.847	2.215	0.915	0.000	0.658	1.357	C Calastad	Conc Dict (ID)	inout)
\$535	3533	lgf2bp1	1.487	9.216	0.705	14.831	0.556	0.351	0.586	0.123	1.838	2.411	5.042	1.334	5.729	1.450	1.576	5.840	1.974	U selected	serie Plot (ID I	mputy
\$635	3633	Igfbp4	3.957		0.511	0.445	0.357	0.270	0.530	0.486	9.947	11.932	5.293	8.977	8.778	10.658	12.617	4.215	9.315	Gene Sea	ch	
1361	4359	Insm2	0.816	0.628	0.828	1.553	0.862	0.694	0.845	0.749	2.093	1.801	1.422	1.822	2.728	2.883	2.577	2.098	1.296	O dene bed	c.n	
417	7415	Igfbp6	1.422	4.096	0.980	1.822	0.455	0.249	0.664	0.428	0.053	0.561	2.087	0.024	0.918	0.000	0.000	2.643	0.000			_
702	7700	lgf2bp2	0.626	2.391	1.330	1.217	0.332	0.253	0.319	0.611	9.974	9.298	11.231	10.385	10.257	10.274	9.668	11.668	10.487	insulin		- 1
3264	8262	lgf2r	1.190	0.763	0.946	0.776	0.885	0.810	0.958	0.811	10.204	10.455	9.814	10.124	9.838	8.350	8.365	8.406	8.783			
472	8470	Igfals	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Seat	ch	x
0355	10353	Insl6	0.558	1.070	0.453	1.998	0.470	0.925	0.341	0.361	8.821	7.979	8.919	7.679	9.820	8.025	7.045	8.008	7.236		••••	
0420	10418	Ide	1.049	0.963	1.224	1.234	0.834	0.900	0.587	0.370	7.537	7.606	7.483	7.829	7.840	7.804	7.612	7.710	8.130			
0590	10588	Ins1	0.823	0.417	0.416	0.415	0.825	0.414	0.414	0.413	1.278	0.996	0.016	0.013	0.010	1.929	1.580	0.000	0.000			
2094	12092	Insm1	0.676	2.366	0.685	1.065	1.000	0.270	0.383	0.905	0.564	0.000	1.806	0.019	0.655	0.924	0.000	2.253	0.000			
2930	12928	Rxfp1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			

그림 1-18. Genes related to insulin

2. Web 기반 Gene Set Enrichment 분석

2-1. DAVID tool을 이용한 Functional Annotation 분석

DAVID 는 다양한 데이터 베이스를 기반으로 유전자의 상관관계를 통계적으로 분석하여 유전자의 주요 기능을 예측하는 analysis tool 이다. 분석과정은 그림 2-1 과 같다.

DAVID 에서는 3 천 개 이상의 유전자는 분석할 수 없으므로 3 천 개 이하로 유전자를 선별해야 한다. mRNASeq 결과에서 significant gene 을 선별하여 DAVID 분석을 한다. DAVID 홈페이지 (<u>http://david.abcc.ncifcrf.gov/</u>)에 접속하여 "Functional Annotation"을 클릭한다(그림 2-2).

그림 2-2. DAVID tool webpage

"Upload" 탭에서 Step 1 에서 Step 4 까지 수행한다(그림 2-3). Step 1 에서선별한 유전자의 Gene Symbol 을 복사하고 "A: Paste a list" 창에 붙여 넣는다. Step 2 에서"OFFICIAL_GENE_SYMBOL"를 선택한다. 만약 step 1 에서 Gene Bank No.를 넣었다면 "GENEBANK_ACCESSION" 을 선택한다. Step 3 에서 "Gene List"를 체크하고 Step 4 에서 "Submit List"를 누른다. Gene Symbol 을 넣은 경우,"multiple species have been detected in your gene list"라는 창이 뜨면"확인"을 누른다.

그림 2-3. DAVID tool : Step 1 ~ Step 4

실험한 종을 선택하고 "Select Species"를 누르면 해당 종의 유전자를 대상으로 다시 분석된다. 예시에서는 160개의 유전자 리스트를 넣었지만 데이터베이스에서 기능이 밝혀진94개이기에 최종 94개 유전자를 대상으로 Functional Annotation 분석이 완료되었다(그림 2-4).

그림 2-4. DAVID tool : Select Species

분석 결과를 확인하기 위해 예로 Gene Ontology 중 Biological Process 를 확인한다."Gene_Ontology"의 "+" 표시를 클릭하여 결과 창을 열고 "GOTERM_BP_FAT"의 "Chart"를 누르면 94 개 유전자들이 관여하는 Biological Process 에 속하는 GO를 확인할 수 있다(그림 2-5). 관심 GO를 클릭하면 QuickGO 데이터베이스로 연결되어 각 GO의 정보를 확인할 수 있다. GO의 Gene 막대를 클릭하면 해당 GO 관련 유전자들을 확인할 수 있다.

unctional Categories (3 sele	cted)		DAVID: Database for J	enotation, visualization, and integrated Discovery	Laboratory of Immunopa - Windows inte	net explorer	
Sene_Ontology (3 selected)	,		M nep // avid abce net	dr.gov/cranoleport/sprannots25			-
GOTERM_BP_1	69.1% 65	Chart	Sublist Categ	enr d	Iem	C RT Gene	
COTERM BR 2	69.1% 65	Chart	GOTERM_BP	FAT cell-matrix adhesion		R	5
		(Chart)	GOTERM_BP	FAT cell-substrate adhesion		RI F	
GOTERM_BP_3	68.1% 64	Criart	GOTERM_BP	FAT cell adhesion		RT 🚃	
GOTERM_BP_4	64.9% 61	Chart =	GOTERM_BP	FAT biological adhesion		1 =	
COTERM BR 5	59.6% 56	Chart _	GOTERM_BP	FAT inflammatory response		RI =	
		Chart A	GOTERM_BP	_FAT integrin-mediated signaling pathway		RI =	
GOTERM_BP_ALL	69.1% 65	Crian		PAT cellular cation nomeostasis			
GOTERM_BP_FAT	63.8% 60	Chart	GOTERM BE	FAT cation homeostasis			
GOTERM CC 1	73.4% 69	Chart _	GOTERM_BP	FAT kidney development		RI =	
	77 496 60	Chart	GOTERM_BP	FAT cellular metal ion homeostasis		RT =	
GOTERM_CC_2	73.470 05		GOTERM_BP	FAT metal ion homeostasis		BI 🚍	
GOTERM_CC_3	73.4% 69	Chart	GOTERM_BP	FAT urogenital system development		RT 🔳	
GOTERM_CC_4	67.0% 63	Chart	GOTERM_BP	FAT metanephros development	× ×	<u>RI</u>	
GOTERM_CC_5	62.8% 59	Gene R	eport				
GOTERM CC ALL	73.4% 69						
	(3 AV (4	Current Ge	ne List: List_1				
GOTERM_CC_FAT	03.8% 00	Current Ba	ckground: Hom	o sapiens			
GOTERM_MF_1	71.3% 67	94 DAVID	US .				
GOTERM MF 2	71.3% 67	6 record(s)				
1	67 996 60	OFFICIAL	_GENE_SYMBOL	GEN	ENAME		R
GOTERM_MF_3	03.8% 00	AGT		angiotensingen (sergin pentidase inhit	ator, clade A. member 8)	RG	
		ITGB18P1		integrin beta 1 binding protein 1		RG	
		ITGA8		integrin, alpha 8		RG	
		LAMAS		laminin, alpha 5		RG	
		CONCERNMENT OF THE OWNER OWN					

그림 2-5. DAVID tool : exploring Gene Ontology analysis result

이와 같은 방법으로 Pathway 결과를 확인해 보면 KEGG_PATHWAY database 에서 주요 Pathway가 나온다(그림 2-6).각 pathway 를 누르면 pathway 그림을 확인할 수 있다. pathway 그림에서 별 표시가 되어 있는 유전자가 input 유전자(160 개) 중 해당 pathway 에 관여하는 유전자이다. 유전자를 클릭하면 유전자 정보를 자세히 알 수 있다.

그림 2-6. DAVID tool : exploring Pathway analysis result

DAVID 분석은 input 한 유전자들이 유의하게 관련되는 GO, pathway 등을 분석하는 tool 이다. 즉, input 한 유전자에서 많은 유전자들이 관련되는 GO, pathway 만 결과로 나오기 때문에 input 유전자 중 적은 수가 관련되는 GO, pathway 는 결과에 나오지 않는다. 또한 input 유전자의 수가 적으면 분석 결과가 없을 수도 있다. DAVID 에서는 유전자 2 개 이상, EASE score 0.1 이하를 default 로 분석하여 이 기준에 적합한 결과를 보여준다. option 에서 이 기준을 조정할 수 있다. David 분석 결과의 각 항목은 DAVID 홈페이지의 Help and Tool Manual 에 자세히 설명되어 있다(그림 2-7).

Annotation Summary Result	S	Hala and Taal Manual
Current Gene List: List_1 Current Background: Homo sapiens	94 DAVID IDs	Clear All
 Disease (1 selected) Functional Categories (3 selected) 		
Gene_Ontology (3 selected)		
 General Annotations (0 selected) Literature (0 selected) 		

그림 2-7. DAVID Help and Tool Manual

2-2. String-db tool을 이용한 gene set분석

String-db tool 은 Protein-Protein Interaction 데이터 베이스를 기반으로 유전자의 상관관계를 통계적으로 분석하여 유전자의 주요 기능을 예측하고 Network 을 build 해 주는 분석툴이다. 분석과정은 그림 2-2-1과 같다.

String-db 에서는 500 개 이하의 유전자를 input 하는 것을 권장하고 있고 여러 public ID 중 EntrezGeneID 사용이 좀더 편리하다. mRNA-Seq 결과에서 significant gene 을 선별하고 String-db 홈페이지 (http://string-db.org/)에 접속하여 "Multiple proteins"을 클릭하고 "List of names" 입력창에 유전자 리스트를 복사한다.그리고 "Organism" 입력창에 해당 species 학명을 입력하고 "Search"를 클릭한다(그림 2-2-2).

\leftrightarrow \rightarrow C \odot string-o	lb.org Version: 10.0		LOCIN RECIST	略 ☆ :
	🕸 STRING		Search Download Help My Da	ta
	Protein by name	>	SEARCH	
	Protein by sequence	>	Multiple Proteins by Names / Identifiers	
	Multiple proteins	>		
	Multiple sequences	>	List Of Names: (one per line, examples: #1 #2 #3)	
	Organisms	>	Fix Serpina7 Cidn2	
	Protein families ('COGs')	>	Kartr Adarg2 Frdr1	
	Examples	>	or, upload a file:	
	Random entry	>	Browse	
			Organism:	
			Mus musiculus	
			SEARCH	

그림 2-2-2. Multiple proteins search

"Search" 결과 중간에 아래 그림과 같은 유전자 확인 단계가 있고 별 이상이 없으면 "continue"를 클릭하여 계속 진행한다(그림 2-2-3).

C C ctrin = all			
U string-db	Version: 10.0	LOGIN REGISTER	
	STRING Search Download	Help My Data	
	The following proteins in <i>Mus musculus</i> appear to match your input. Please review the list, then click 'Continue' to proceed.	CONTINUE ->	
	Sox17:		
	Sax17 - SRV-bax containing gene 17, Acts as transcription regulator that binds target promoter NA and bends the DNA. Binds to the se or 5'-AACAAG-3'. Modulates transcriptional regulation via WNT3A. Inhibits Wirt signaling. Promotes degradation of activated CTNNB1. regulation of embryonic development. Required for normal looping of the embryonic heart tube. Required for normal development endoderm. Probable transcriptional activator in the premelotic germ cells. Isoform 2 (T_SOX17) shows no DNA-binding activity	quences 5- AACAAT-3 Plays a key role in the t of the definitive gut	
	Rev1':		
	Rect - REVI homolog (S. cerevisiae); Decrycytidyl transferase involved in DNA repair. Transfera a dOMP residue from dCTP to the 3'emit temptate-dependent reaction. May assist in the first step in the bypass of abasic leations by the insertion of a nucleotide opposite the leation induction of mutations by physical and chemical agents.	d of a DNA primer in a on. Required for normal	
	Mad212 - MAD2 mitotic arrest deficient-like 2, Adapter protein able to interact with different proteins and involved in different biological pr interaction between the error-prone DNA polymerase zeta catalytic autouris REV3L and the inserter polymerase REV3, thereby mediating up switching in translesion DNA synthesis. Translesion DNA synthesis releases the replication blockade of replicative polymerases, stall lesions. May also regulate another aspect of cellular response to DNA damage through regulation of the JNK-mediated phosphoryla []	ocesses. Mediates the he second polymerase ed in presence of DNA	
	Feep20 - RIKEN cDNA 2610002J02 gene; Component of the Fanconi anemia (FA) complex required to recruit the FA complex to DNA (ICLs) and promote ICLs repair. Following DNA damage recognizes and binds 'Lys-63'-linked ubiquitin generated by RNF8 at ICLs and reor of the FA complex. Promotes translesion synthesis via interaction with REVI (By similarity)	interstrand cross-links uits other components	
	Mars2:		
	Mars2 - methionine tRNA synthetase 2 (mitochondrial)		
	Igfbp2':		
	✓ Igftpp2 - insulin-like growth factor binding protein 2: Inhibits IGF-mediated growth and developmental rates (By similarity). IGF-binding protein a final disc of the IGFs and have been shown to either inhibit or stimulate the arrowth normation effects of the IGFs and have been shown to either inhibit or stimulate the arrowth.	oteins prolong the half- interaction of IGEs with	

그림 2-2-3. Gene confirmation step

분석이 완료되면 그림 2-2-4와 같이 String DB 기반 Network 결과를 확인할 수 있고 "Analysis" 탭을 클릭하면 "Functional enrichments in your network" 결과를 확인할 수 있다(그림 2-2-5). 각 Functional DB 결과의 오른쪽 하단에 "more"를 클릭하면 FDR<0.05 이하에 해당하는 항목을 모두 볼 수 있다.

그림 2-2-4. String network result

		0.2277/ #			And the second second second				
		@ Legend >	Data Settings	© View Settings ≥	III Tables / Exports 💙	Fvidence	E Analysis Y	De	
Network Sto	ta								
		a see bar a	factor: DEF			a second as	mbar of originary 105		
		number o	of edges: 272			PP enri	thment p-value: D		
	0.03	average node local clustering cor	efficient: 0.347			you network has so	<mark>gnillicantiy more interac</mark> Jubat dasa task mosali	16.02	
		1				in an expected	THE SECOND CONTRACTOR	6	
Functional e	nrichments in your netw	ork							
				Biological Process (CO)				
pathway iD	pathway description							eount in gene	set talae diadavery rate
GO:0001676	long-chain fatty acid met	tabolic process						1	2.65e-06
GD:0019575	regulation of cell differen	way						41	7.41e-05
GO:0042/38	exogenous drug cataboli	ic process						7	0.000116
GO:0050793	regulation of developme	ntal process						50	0 000116
									(nove)
				Molecular Function	(GO)				
pathway iD	pathway description							count in gene	set faise discovery rate
GO.0016712	oxidoreductase activity,	acting on paired do	nors, with incorporation or rec	luction of molecular oxyges,	reduced flavin or flavoprotein a	s one donor, and incorp	cration of one atom of	oxygen 11	2.3e-09
CO-0070.30	monorygenate activity								1.106-00
GD:0008392	arachidonic acid eporyc	enace activity						8	1.99e-07
GO.0020037	herrie binding							15	1.23e-06
									(more)
				KEGG Pathways					
pathway iD	pathway description							count in gene	set. Telse discovery rate
00870	Retinol metabolism							15	9 DSe-12
00530	Sterold pormone plosunt	theele							3.200 00
00591	Lincleic acid metabolism							8	4.72e-06
0.52.54	Chemical carcinogenesis	5						10	5.16e-06
									(more)
				PFAM Protein Donu	uins				
pathway iD	pathway descoption							count in gene	set feise discovery rate
11 00067	Cytoenrome (1460							1	0.00745
			1	NTERPRO Protein Domains	and Features				
pathway ID	pathway description							count in gene	set Teise discovery rate
12R001128	Cytochrome P450	nund atta						7	P (00019
IPR002401	Cytochrome P150, E-c as	Es, group I						6	0.0238
Statistical be	ockground								
I or the above	e enrehment analysis,				Maole Gener			LIDE ATTR	
is assumed:	y stati sticer backgroond				whole Genu	ne v j		UP CLAIR E	-
Save / Expor	rt								
			Biological Process (bcolnwob (00	49 GU terma argniticentiv enni	ched: tile format: tab dokr	mica		
			Molecular I unction (download (00	12 GO terma argnificently enric	ched; tile format, tab dolv	nned		
			KEGG Pathw	oya download	8 politivaya significantly crinici	hed five format tab delim	itcd		
			P AM Protein Doma	ina <u>download</u>	one single domain is enriched	tile tarmat: tab delimited			
		INTERT	10 Protein Domains and Leatu	irca <u>download</u>	3 domains significantly princh	ed file formal: tab delivriv	tod		

그림 2-2-5. Functional enrichments result

관심 있거나 중요한 Function을 클릭하면 Network상에서 해당 유전자들이 붉은색으로 표시되고 (그림 2-2-6) 관심 있는 유전자를 클릭하면 해당 유전자의 자세한 정보를 추가로 얻을 수 있다(그 림 2-2-7).

그림 2-2-7. Gene selection on your network

 "Legend" 탭에서는 Node, Edge, Input 유전자의 설명을 자세히 볼 수 있고(그림 2-2-8)"Tables/Exports" 탭에서는 Network와 유전자 정보를 파일로 저장할 수 있다.(그림 2-2-9)

lones:										
Network nodes n	epresent proteins	Node Size		Node Color						
splice isoforms or are collopsed, i.e. proteins produced focus.	post-transfational modifications sach node represente all the hy a single, protein-coding gene	ernali nodes: protein of unknown large nodes: some 3D structure i	ID structure koown or predicted	eolored nodea: query proteins and first shell of interactors white nucles: second shell of interactors						
dges:										
Edges represent associations are n mesoingful, i.e. pro- shared function; fi they are physically	protein-protein associations neant to be specific and mems jointly contribute to a is does not necessarily mean binding each other.	Known Interactions	Predicted I nes C-O nined C-O O-O	nteractions gene neighborhood gene finsions gene co-occurrence	Others Lextmining Construction protein homology					
our Input:										
🖶 Pparg	peroxisome proliferator a Once activated by a figan controls the peroxisomal a key regulator of the tiss mediated proinfia [] (60	peroxieomo proliferator activated receptor gammo; Receptor that binds peroxiaomo proliferatore such as hypolipidemic druge and fatty acids Once activated by a figand, the receptor binds to a promoter element in the gene for acyl-CoA axidase and activates its transcription. It theref controls the peroxicomal bota oridiation pathway of fatty acids. Key regulator of adiposyste differentiation orid glucose homeostasis. ARF6 ac a key regulator of the bissue-specific adipocyle P2 (aP2) enhancer. Acts as a critical regulator of gul homeostasis by suppressing NF-kappa-5 medicade prohifid_1j (60 sol)								
🖶 Pdgíra	platelet derived growth (PUR) C and plays an essu context, promotes or inlu mesenchymal stem cells development of the mass	plaielet derived growth factor receptor, alpha polypeptide, "prosine-protein Kinase linat acts as a cell-surface receptor for PDGPA, PDGPB and FULLI C and plays an essential role in the regulation of embrycoic development, cell proliferation, survival and chemotaxis. Thepending on the context, promotes to tablets cell proliferation and cell magnation. Plays an important role in the differentiation of bone marrow-derived mesenchymal stein cells. Its guined for contral skeletics development and rephalic closure during embrycoic development. Hequied for normal development of the maxims into all 1. (FORM 9 as)								
e Ifreil	interferon-related develop Induced by NGF. May bo	interteron-related developmental regulator I; Could play a role in regulating gene activity in the profilerative and/or ditterentiative pathways Induced by NGF. May be an outocrine foctor that attenuates or amplifies the Initial ligand induced algonal (449 aa)								
 Rec8 	REC8 homolog (yeast); R on chromosomo arms by centromeres during anap	o (300 BB) equired during meiosis for separation soparin during anophase i allows for hase II allows for sister chromatid se	of sister chrometids ar homologous chromoso paration in meiosis II (5	nd homologous chromos une ocparation in meloa 191 aa)	iomes. Proteolytic cleavage of REC8 Is i and cleavage of REC8 on					
👹 Tiam1	L cell lymphome invesior activities: Acts as a GDP Activates (IAG1, CIIC42, i	1 cell Jumphoms available and meteritaries 17 Modulates the activity of 10 IT-blue proteins and connects extrace/blue signals to cytotabeletal articlifies. Acts are a OD-disacebalue stimulate protein but stimulates the OD-OTP activity or SH-D-Be Theorem and activities them. Activities 14.01, ITIDED, and a deserver event fulling fly antimulary. Affects investmenses of Lymphome activity (1997 and).								
Cyp2c29	eviochrome P450. family ae)	cyrachrome P450, family 2, subfamily 6, polypoptide 29; Metabolizos arachidonic aeld to produce 14,15 ele opoxyetecaatrienole acid (EET) (490 ael								
🛢 Срхб	glistathione peroxidase 5	(221 AB)								
A complete	evtochrome P450, famliv	cytochrome P480, family 2, subfamily b, polypeptide 18 (491 aa)								
U Cyp2013										

그림 2-2-7. Legend of your network

	as a bitmar	image download file	format is 'ENG' portable netwo	ark areahic		
as a hio	h-resolution	bitman download san	e PNG format, but regaintion :	nt 400 doi		
	as a vector	graphic download SV/	ecalable ventor graphic - can	be opened and edited in litretrator Dr	collicate Dia ato	
as simula	abular tex	output download TSL	tab appointed values - can be	ononod to Exact		
a	s an XMI su	mmary download stru	ctured XML interaction data a	coording to the 'PSI-MI' data standard		
	aburch com	diustas download of	t file format describing the se	ardinatan and colora of noden in the n	attuo de	
	protain con	unates, download and	tene tornat acounting the con	eremates and colors or nodes in the m	build a	
	protein seq	derices. download war	t multi-rasta tormat - containii 5 defeedad Ele deseeddae des	ng me aminoacid sequences in the net	work	
	protein a niu	rations, <u>download</u> a ta	e-delimited the accorpting the l	names, comans ano annotareo tanoti	ons of the herwork proteins	
Browse Inter	actions in t	abular form:				
Anode1	node2	nodel accession	node2 accession	node1 annotation	node2 annotation	score
Acot1	Cyp4a10	ENSMUSP0000012644	8 ENSMUSP0000061126	acyl-CoA thioesterase 1; Acyl-CoA	cytochrome P450, family 4, subfam.	0.561
Apot1	Cyp4a14	ENSMUSP0000012644	8 ENSMUSP0000030487	acyl-CoA thlocstcrase 1; Acyl-CoA	cytochrome P450, family 4, subfam.	0.475
Apot1	Rhbg	ENSMUSP0000012644	8 ENSMUSP00000130767	acyl-CoA thloesterase 1; Acyl-CoA	Rhesus blood group-associated B	0.473
Acot2	Cyp4a10	ENSMUSP000002164	9 FNSMUSP0000061126	acyl-CoA thloestcrase 2: Acyl-CoA	cytochrome P450, family 4, subfam.	0.432
Adrb3	Adrbk2	ENSMUSP000008016	2 FNSMUSP00000070445	adrenergie receptor, beto 3; Beta-a	adrenergie receptor kinase, beta 2:	0.649
Adrb3	Mc1r	ENSMUSP0000008016	2 ENSMUSP0000095929	adrenergie receptor, beto 3, Beta-a	melanocortin 1 receptor; Receptor	0.900
Adrb3	Pparg	ENSMUSP000008016	2 ENSMUSP0000000450	adronorgio receptor, beto 3, Beta-a	регохівоте proliferator activated г	0.791
Adrb3	Slo2a4	FNSMUSP000008016	2 ENSMUSP0000018710	adrenergie receptor, beto 3; Beta-a	solute carrier family 2 (focilitated g.	0.493
Adrbk2	Adrb3	ENSMUSP0000007044	5 ENSMUSP0000080162	adrenergie receptor kinase, beta 2;	adrenergie receptor, beta 3; Beta-a	0.649
Adrbk2	Ncald	ENSMUSP000007044	5 FNSMUSP0000087611	adrenergie receptor kinase, beta 2;	neurocalotn delta; May be Involved	0.660
Aldh3a2	Cyp4a10	ENSMUSP0000007376	4 FNSMUSP0000061126	aldehyde dehydrogenase family 3,	cytochrome P450, family 4, subfam.	0.943
Aldh3a2	Cyp4a12b	ENSMUSP000007376	4 ENSMUSP0000092487	aldehyde dehydrogenase family 3,	cytochrome P450, family 4, subfam.	0.916
Aldh3a2	Cyp4a14	ENSMUSP0000007376	4 ENSMUSP0000030487	aldehyde dehydrogenase family 3	cytochrome P450, family 4, subfam.	0.947
Aldh3a2	Cyp4a32	ENSMUSP000007376	4 ENSMUSP0000081369	aldehyde dehydrogenase family 3	cytochrome P450, family 4, subfam.	0.904
Apol10a	Apol11a	ENSMUSP000006065	0 FNSMUSP00000132565	apolipoprotoin L 10A	opolipoprotein L 11a	0.900
Apol11a	Apol10a	ENSMUSP0000013256	5 FNSMUSP0000060650	apolipoprotein L 11a	opolipoprotein L 19A	0.900
Aqp4	Avpr1a	ENSMUSP000007808	8 ENSMUSP00000020323	aquaporin 4; Forms a water-specifi.	orginine vocopressin receptor 1/;	0.430
Aqp4	Sle1a2	ENSMUSP0000007808	8 FNSMUSP00000079100	aquaporin 4; Forms a water-specifi	solute carrier family 1 (glial high af	0.630
Aqp4 Arhgap10	Trpv4 Rac3	ENSMUSP0000007808 ENSMUSP0000007565	8 ENSMUSP00000071859 8 ENSMUSP00000018156	aquaporin 4; Forma a water-specifi Rho GTPase activating protein 10;	transient receptor potential cation RAS-related C3 botulinum aubstrat	0.910
	e 1 of 28 ⊯	н				

그림 2-2-8. Tables/Exports of your network

2-3. MSigDB기반 GSEA 분석

GSEA 분석은 MSigDB 기반으로 유전자의 상관관계를 통계적으로 분석하여 입력한 유전자 셋의 주요 기능을 예측하고 각 유전자가 어떤 기능들에 포함되는지 overlap 분석을 제공해 준다. 분석과정은 그림 2-3-1과 같다.

그림 2-3-1. Web based GSEA tool analysis process

MSigDB에 접속하여 "Investigate gene sets"을 클릭하고 등록한 이메일을 입력하여 로그인을 수행한다.(그림 2-3-2).만약 등록이 필요할 시 "Click here"을 클릭하여 등록을 진행하면 된다.(그림

🗱 GSEA Login 🛛 🗙	 σ
→ C ③ software.broadinstitute.org/gsea/login.jsp	20 众
CSFA	
COLA	antation Portact
 Galar nome powniejska moleculor arginiculta, powniejska pocul 	andown contract
Login to GSEA/MSigDB	
Login	
Click here to register to view the MSigDB gene sets and/or download the GSEA software. This helps us track and better	erve our user community.
If you have already registered for GSEA or MSigDB please enter your registration email address below.	
Items marked with # are required.	
Email: *	

그림 2-3-3. GSEALogin page

"Gene Identifiers"입력창에 유전자 리스트(Gene Symbol, EntrezGeneID 또는 public ID)를 입력하고 "Compute Overlaps"에 원하는 DB 를 클릭한 후 맨 아래 "compute overlaps" 버튼을 클릭한다.(그림 2-3-4).DB 선택시 DB 명 앞의 파란색 글자를 누르면 해당 DB 정보를 확인할 수 있다.

그림 2-3-4. GSEAAnalysis

분석이 완료되면 그림 2-3-5 와 그림 2-3-6 과 같이 통계적으로 유의한 Gene Set List 와 Gene/Gene-set Overlap Matrix 결과를 확인할 수 있다.

그림 2-3-6. GSEAAnalysisResult(Gene/Gene-set Overlap Matrix)

3. KEGG DB 기반 Pathway 분석

mRNA-Seq 분석 결과에서 up/down-regulated 유전자들이 어떤 Pathway에 속하는지 확인하고자 한다면 KEGG에서 제공하는 KEGG Mapper를 이용하면 된다. 사용방법은 그림 3-1과 같은 순서로 진행된다.

그림 3-1. KEGG Mapper tool analysis process

그림 3-2는 mRNA-Seq report에서 2fold, normalized RC(log2)>6을 기준으로 선별한 유전자를 KEGG 분석하는 과정이다.

*KEGG input 값은 excel 파일의 Annotation 항목 앞에 제작되어 있다.

오른쪽 필터에서 Fold change와 Normalized RC (반복실험의 경우 p-value) 값을 지정하고, 확인하 고자 하는 Fold change 조합을 선택하여 필터를 적용 한다.

필터를 적용하여 선별 된 유전자의 KEGG input [Entrez ID, FC Color(#숫자,black)] cell을 복사하여, KEGG 분석에 사용할 것이다.

	※ 잘라내기 ····································	Calibri	• 11 ·	ר א ר	= = =	# ¹ /**	📑 텍스트 줄	들 바꿈	숫자		•	1	- 🖹		통 합계 · 🛃	A
붙이	1넣기 🗸 🛷 서식 복사	· 가가가 가	· 🖽 • 🎒 • 💾	내철			韓 병합하고	가운데 맞춤	• ₩•	% ,	8,000 조건부 표 서식 × 서성	트 셸 샵(닉 * 스타)				같기 및 선택 ▼
	클립보드	5	글꼴	5		<u>,</u>	!ē		5	표시 형식	5 <u></u>	4 <u>8</u>	L		C	
	B3	- (•	fx 1.48037036	5202988] ľ	(EQ	U	
	А	В	С	D	E	F	G	Н	1	J	К	L				-
1	Filter: 1039	Fold c	nange	Norm	alized RC (log2)	Ra	w data (RC)			KEGG mapper	nput	•		01	Inalysis
2	Gene symbol	B/A 💌	C/A 💌	Α 🔽	B	c 🔽	Α 🔽	В	C 🔽	Entrez_In_	B/A	C/A	In	put	Ť	election
724	EIF2B3	2.021	1.579	9.681	8.706	10.560	936	405	1416	3891	#FF6347,black	#FFA07A,black				
751	UQCRH	3.086	1.929	11.872	10.406	13.375	4277	1318	9966	7388	#FF6347,black	#FFA07A,black		-+-1		
947	TYW3	2.051	1.946	10.192	9.584	11.211	1334	745	2224	127253	#FF6347,black	#FFA07A,black		시		
966	NEXN-AS1	0.435	1.108	8.972	8.607	7.677	572	378	191	374987	#87CEEB,black			•)
1001	LOC646626	0.498	0.586	8.060	7.484	6.778	303	173	102	546626	#87CEEB,black	#B0E0E6,black	Ļ			v
1023	GBP3	2.319	2.148	7.301	6.399	8.231	179	81	281	2635	#FF6347,black	#FF6347,black	GBP3	7	p-value	
1184	LAMTOR5	2.047	1.839	11.397	10.069	12.313	3076	1043	4775	10542	#FF6347,black	#FFA07A,black	LAMTOR5	HE	-	
1271	CD101	0.454	2.828	4.446	6.170	4.004	24	69	14	9398	#87CEEB,black	#FF6347,black	CD101	EV		
1331	TXNIP	2.506	3.261	6.363	5.797	7.349	93	53	152	10628	#FF6347,black	#FF6347,black	TXNIP	ES	Sample C	omparison / Filter
1403	MRPS21	2.122	1.345	9.250	8.035	10.133	694	254	1053	54460	#FF6347,black	#FFE4B3,black	MRPS21	MI	-	
1409	ADAMTSL4	0.481	0.591	10.394	10.734	8.768	1535	1655	408	54507	#87CEEB,black	#B0E0E6,black	ADAMTSL4	AE	✓ B/A	<u>^</u>
1428	SEMA6C	0.440	0.343	9.007	9.265	7.518	586	597	171	10500	#87CEEB,black	#87CEEB,black	SEMA6C	m-	C/A	
1436	PSMD4	2.018	0.991	12.673	12.047	13.476	7455	4111	10689	5710	#FF6347,black		PSMD4	AF		
1441	SELENBP1	0.168	2.248	6.289	5.086	3.102	88	32	7	3991	#00BFFF,black	#FF6347,black	SELENBP			
1465	HRNR	0.391	0.935	10.512	10.985	9.284	1666	1969	584	388697	#87CEEB,black		HRNR		21-1-1	
1550	SHE	0.386	1.612	6.004	5.289	4.553	72	37	21	126669	#87CEEB,black	#FFA07A,black	SHE		ᆡ아	
1570	EFNA3	0.481	0.398	10.079	9.817	8.449	1233	876	327	1944	#87CEEB,black	#87CEEB,black	EFNA3			
1575	TRIM46	0.430	0.437	8.955	9.185	7.081	565	565	126	30128	#87CEEB,black	#87CEEB,black	TRIM46			
1632	CRABP2	0.379	1.222	11.041	10.557	9.249	2403	1463	570	1382	#87CEEB.black		CRABP2		- 1	
															FOI	d
																-
														cha	ang	e 항
														5	ᆚᄷ	IEH

그림 3-2. KEGG Mapper tool analysis process

그림 3-3과 같이 KEGG Mapper 웹페이지(<u>http://www.genome.jp/kegg/tool/map_pathway2.html</u>)에 접속하고 Search & Color pathway 링크에 들어가면 아래와 같은 화면이 보여진다. 분석하고자 하 는 유전자의 species를 선택하고, 'primary ID'는 KEGG identifiers로 선택한 뒤 'Enter objects one per line followed bgcolor, fgcolor' 창에 엑셀에서 준비해 놓은 Entrez ID, Color 항목을 복사-붙여넣 기를 한다. 마지막으로 "Include aliases"와 "Use uncolored diagram" 항목에 체크를 한 후 Exec 버 튼을 누른다.

KEGG KEGG	Mapper – Search&Color Pathway	
About KEGG Mapper	Search agains: hsa	org
Search Pathway Search&Color Pathway Color Pathway Color Pathway WebGL	Primary ID: KEGG identifiers	pecific nathways only)
Search Brite Search&Color Brite Join Brite Join Brite Table	633 # <u>87CEEB</u> ,black ▲ 105373383 # <u>87CEEB</u> ,black 1852 # <u>87CEEB</u> ,black 10134 # <u>87CEEB</u> ,black 2157 # <u>87CEEB</u> ,black 283981 # <u>87CEEB</u> ,black	Examples Select Find organism - Chrome
Search Module Search&Color Module	1438 # <u>87CEEB</u> ,black 9189 # <u>87CEEB</u> ,black 114758 # <u>87CEEB</u> ,black	Find three- or four-letter KEGG organism code
Search Disease Reconstruct Pathway	Alternatively, enter the file name containing the data: 파일 선택 선택된 파일 없음	human Select Cancel human Homo sapiens (human) [hsa] human body Jouse) Pediculus humanus corporis (human body Jouse) [ph
Reconstruct Brite Reconstruct Module Map Taxonomy	If necessary, change default bgcolor: pink	numan body louse) realcalus numanus corports (numan body louse) (pric
Convert ID	✓ Use uncolored diagrams	*
Annotate Sequence BlastKOALA	Display objects not found in the search	
KEGG Atlas KEGG	Search pathways containing all the objects (AND search) Exec Clear	

그림 3-3. KEGG Mapper tool analysis process

분석결과, 입력한 유전자들이 관여하는 pathway list가 나온다(그림 3-4). pathway 이름 옆에 있는 괄호 안 숫자는 입력한 유전자 중 각 pathway에 관여하는 유전자의 수이다. 괄호 안 숫자를 클릭 하면 해당 유전자 목록을 볼 수 있다. pathway 이름을 클릭하면 해당 pathway chart가 열리고 입 력한 유전자의 발현 up/down (red/green)이 색으로 표시되어 있다. Pathway 이미지는 "다른 이름 으로 저장"이 가능하고 "html"으로 저장하면 이미지에 링크된 항목을 그대로 유지해서 저장이 가 능하다.

그림 3-4. KEGG Mapper tool analysis result

4. MeV Software 이용 Clustering Heatmap 작성

MeV 소프트웨어는 미국의 Dana-Farber Cancer Institute에서 개발한 Microarray, mRNA-Seq 전용 분석 프로그램으로 연구자들에게 무료로 공급하고 있다. 주로 clustering 분석과 통계분석(Kmeans clustering, Hierarchical clustering, t-test, Significance Analysis of mRNA-Seqs, Gene Set Enrichment Analysis, EASE)을 할 수 있는 프로그램이다. 아래 웹페이지에 접속하면 최신의 업데이 트된 프로그램과 매뉴얼을 다운받을 수 있다.

<u>http://www.tm4.org</u> >> 오른쪽 Browse 항목내 "TM4 MeV Stand-Alone Client" 클릭 프로그램을 다운받아 압축을 풀고, MeV 또는 TMEV를 클릭해서 프로그램을 실행시킨다(그림4-1).MEV프로그램을 실행시키면 세 개의 창이 나타난다(그림4-2). 분석창은 프로그램창의 메뉴에서 file->New multiple array viewer를 통해 여러개를 생성할 수 있고 데이터 분석은 분석창을 통해 진 행한다.

그림 4-2. MeV program windows

본 자료에서는 MeV 프로그램을 이용하여 Clustering 분석 방법을 설명한다. 우선 MeV 프로그램 에 input할 데이터를 엑셀에서 파일 양식에 맞춰 저장해야 한다. 엑셀에 clustering 하고자 하는 유전자 이름과 fold change 또는 발현값(intensity)를 정리한다(그림 4-3). 그리고 '텍스트 (탭으로 분리)'파일 형식으로 저장해야 MeV에 upload 할 수 있다. MeV에서는 2만 개 이상의 유전자는 clustering 분석을 할 수 없으므로 2만 개 이하로 유전자를 선별해야 한다.

0	1	(° -) =											test	- Micro	soft Exc	cel		
	· · · ·	남입 페이	지 레이아웃	수식	데이터 경	김토	보기	추가	기능	Acrobat								
Acc		스트 기타 원본 -	기존 모 연결	두 새로 이 이	건결 속성 건결 편집 ^역	다 <mark>공</mark> 회			우기 시 적용 1급	텍스트 나누기	중복된 항목 제가	데이터 유효성 검사	- 통합 -	가상 분석 •	**** #	* 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	·분합	이 문 이 위 이 문 하 위
	4440	14 101201	6	C a			08:	× 르미		10		데이터 포구			-		271	
-	G4	•	6	Jx				0	-				14					
1	A	B	CIA	D	E /A	F		G	-	н	-	J	K		L	M		N
2	Gene symt	B/A 2.52	C/A 2 241	D/A	E/A	8					다른	이름으로 저	장					×
2	RRDMS2	0.482	22 152	0.002	0.438	E		· ↑ 🔳	바탕 호	타면 >			C	바탕 화	면 검색		,	P
4	NELL2	0.402	2 098	2 254	10 377											1714		
5	ORCE	0.401	3,659	2.607	0.306	7	성 •	새 쓸더								(i)- •		
6	VKORC1	2.166	2.332	29.065	5.463		🗼 다운	로드	^	3								^
7	ABCC6	3.455	4.018	4.935	0.5		비망 바탕	화면			홍 그를							
8	TBCD	0.466	0.191	2.789	2.56		웹 최근	위지		_								
9	PNMT	0.275	4.544	2.396	0.373	1.00	1 E 73			0	ebg							
10	SERPINF1	13.766	2.581	2.217	2.473		0 = -1			10								
11	PMP22	2.011	0.194	4.287	2.779	14	I LI PC		~		10.00							~
12	GIT1	0.341	0.142	2.056	4.914		TL 01		tart		TH BC							
13	KRT38	8.543	2.753	0.257	0.311			이금((14).	LESI	-	-							Ť
14	KRTAP9-3	0.236	3.14	2.553	0.21		파일	영식(0:	텍스트	(법으로 분	리)	>						~
15	KRT34	0.146	0.428	2.655	2.068			만든 이;	ebg			E	H그: 태	그 추가				
16	COPZ2	6.842	0.345	5.132	0.487													
17	GRP	2.008	2.532	0.394	3.52		문더 수	7171				도구	(L) -	저장	ł(S)	취	소	
18	SFRP1	0.371	14.466	2.145	0.125		e -1 6							-				
19	VSIG10L	0.293	0.209	2.052	8.236													
20	ATG4D	0.487	2.069	0.31	8.464													

그림 4-3. Data format example

input 데이터 저장이 완료되면 MeV 프로그램의 분석창에서 file -> load data를 실행한다(그림 4-4). Browse를 클릭하여 input 데이터를 선택한다. 데이터가 fold change인 경우 "Two-color Array" 로 체크하고 데이터가 intensity인 경우는 "Single-color Array"에 체크한다. 마우스로 데이터가 시 작되는 부위를 클릭한 후 load를 누른다.

<u>ی</u>				Expressio	on File Loade	er			- 🗆 🗙
Select File Lo	ader <u>H</u> elp	,							
-File (Tab D	elimited Mu	Itinie Samnle ((* *))						
1110 (100.00	chinica ma	nuple Sumple							\frown
Select expre	ecion data	file C:WUsers	#ebg#Desktop	#test.txt					Browse
Selectexpre	551011 uata	ine							
Selected file	s	C:#Users	#ebg#Desktop	#test.txt					
Two-	color Array				Single	e-color Ar	тау		
Load Annota	tion Data		~			~	< <		
Load Annota	uon Data		Fold chan	ae				intensity	
		L		9-					
Automatic	tically dowr	nload	Load from loc	al file			Loa	ad Annotation	
Choose an	organism	- N					Please	choose an array	and species name.
		-		Choose	File				
							_		
Expression	Table		Load 전	데이터	시작 위치	click			
gene symbo	B/A	C/A	D/A	E/A					
FAM174B	2.520	3.341	0.062	2.436					^
RBPMS2	0.482	22.152	0.437	0.438					
NELL2	0.427	2.098	2.254	10.377					
ORC6L	0.401	3.659	2.607	0.306					
VKORC1	2.166	2.332	29.065	5.463					
ABCC6	3.455	4.018	4.935	0.500					
TBCD	0.466	0.191	2.789	2.560					
PNMT	0.275	4.544	2.396	0.373					
SERPINE1	13.766	2.581	2.217	2.473					
PMP22	2.011	0.194	4.287	2.119					
Click the upp	per-leftmos	t expression v	alue. Click the L	oad button	to finish.				
			? Me∖	• MultiExp Viewer	periment C	ancel	Load	\triangleright	

그림 4-4. Data uploading method

데이터가 열리면 Adjust Data -> Log Transformation -> Log2 Transform을 선택하여 fold change는 log2(fold change)로, intensity는 log2(intensity)로 바꿔준다(그림 4-5). 왼쪽 메뉴의 Original Data - > Expression image를 보면 log2 값으로 바뀌어 색이 변한 것을 확인할 수 있다.

그림 4-5. Log2 transformation

Analysis-> Clustering-> HCL을 선택하여 Clustering 분석을 시작한다(그림 4-6).

Clustering 분석 시 다양한 옵션을 선택할 수 있다(그림 4-7). Gene tree를 선택하면 fold change 또는 intensity가 유사한 유전자끼리 clustering한 결과가 나온다. Sample tree를 선택하면 발현이 유사한 샘플끼리 clustering한 결과가 나온다.당사에서 clustering 분석을 할 때 Distance Metric는 Euclidean Distance로 Linkage Method Selection은 Average linkage clustering으로 설정한다. 다른 옵션을 선택해도 된다. 옵션을 선택하고 OK를 누른다.

HCL: Hierarchical Clustering
MeV
Tree Selection
Gene Tree Sample Tree
Ordering Optimization
Optimize Gene Leaf Order Optimize Sample Leaf Order
(Leaf ordering optimization will increase the calculation time)
Distance Metric Selection
Current Metric: Euclidean Distance
(The default distance metric for HCL is Pearson Correlation)
Use Absolute Distance
Linkage Method Selection
<u>Average linkage clustering</u>
Complete linkage clustering
Single linkage clustering
Validation
Use Validation (Requires MeV+R)
? MeV•MultiExperiment Reset Cancel OK

그림 4-7. Hierarchical Clustering Method

clustering이 완료되면 왼쪽 메뉴에 Analysis Results에 HCL 결과가 생긴다. HCL -> HCL tree를 클 릭하면 clustering 결과가 화면에 나온다(그림 4-8). 위의 tree는 sample clustering 결과이고 왼쪽 tree는 gene clustering 결과이다.각 tree에는 distance scale bar가 있어서 tree의 길이를 가늠할 수 있다. tree의 길이는 distance이며, distance가 짧을수록 유전자 간 또는 샘플 간의 발현이 비슷한 것, 길수록 발현이 다른 것이다.

그림 4-8. Hierarchical Clustering Result

clustering 결과는 이미지의 크기와 색상을 조절하여 원하는 형태의 이미지를 만들 수 있다(그림 4-9,4-10)

그림 4-9. Clustering image size control

Display -> Set Color Scale Limits을 누르면 color scale bar의 최소값, 중간값, 최대값을 설정할 수 있다. 보통 log2(fold change)는 최소값과 최대값은 같은 크기에 부등호만 바꿔주고(예: min:-3, max:3) 중간값은 0으로 설정해 준다(그림 4-10). 이렇게 하면 up-regulated genes은 red, down-regulated genes은 green으로 나타나게 된다.

그림 4-10. Clustering image color setting

원하는 이미지 조절이 완료되면 File -> Save image를 눌러 이미지를 저장한다. 이때 파일 이름에 파일 확장자명(예: .jpg)을 꼭 기입하여야 이미지 파일로 저장이 된다(그림 4-11).

그림 4-11. Clustering image save